ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison theorem for some extremal eigenvalue statistics

77   0   0.0 ( 0 )
 نشر من قبل Patrick Lopatto
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a method for the comparison of some extremal eigenvalue statistics of random matrices. For example, it allows one to compare the maximal eigenvalue gap in the bulk of two generalized Wigner ensembles, provided that the first four moments of their matrix entries match. As an application, we extend results of Bourgade--Ben Arous and Feng--Wei that identify the limit of the maximal eigenvalue gap in the bulk of the GUE to all complex Hermitian generalized Wigner matrices.



قيم البحث

اقرأ أيضاً

We consider random matrices of the form $H_N=A_N+U_N B_N U^*_N$, where $A_N$, $B_N$ are two $N$ by $N$ deterministic Hermitian matrices and $U_N$ is a Haar distributed random unitary matrix. We establish a universal Central Limit Theorem for the line ar eigenvalue statistics of $H_N$ on all mesoscopic scales inside the regular bulk of the spectrum. The proof is based on studying the characteristic function of the linear eigenvalue statistics, and consists of two main steps: (1) generating Ward identities using the left-translation-invariance of the Haar measure, along with a local law for the resolvent of $H_N$ and analytic subordination properties of the free additive convolution, allow us to derive an explicit formula for the derivative of the characteristic function; (2) a local law for two-point product functions of resolvents is derived using a partial randomness decomposition of the Haar measure. We also prove the corresponding results for orthogonal conjugations.
We consider $N$ by $N$ deformed Wigner random matrices of the form $X_N=H_N+A_N$, where $H_N$ is a real symmetric or complex Hermitian Wigner matrix and $A_N$ is a deterministic real bounded diagonal matrix. We prove a universal Central Limit Theorem for the linear eigenvalue statistics of $X_N$ for all mesoscopic scales both in the spectral bulk and at regular edges where the global eigenvalue density vanishes as a square root. The method relies on the characteristic function method in [47], local laws for the Green function of $X_N$ in [3, 46, 51] and analytic subordination properties of the free additive convolution [24, 41]. We also prove the analogous results for high-dimensional sample covariance matrices.
We analyze the largest eigenvalue statistics of m-dependent heavy-tailed Wigner matrices as well as the associated sample covariance matrices having entry-wise regularly varying tail distributions with parameter $0<alpha<4$. Our analysis extends resu lts in the previous literature for the corresponding random matrices with independent entries above the diagonal, by allowing for m-dependence between the entries of a given matrix. We prove that the limiting point process of extreme eigenvalues is a Poisson cluster process.
106 - Xing Huang , Fen-Fen Yang 2020
Sufficient and necessary conditions are presented for the comparison theorem of path dependent $G$-SDEs. Different from the corresponding study in path independent $G$-SDEs, a probability method is applied to prove these results. Moreover, the results extend the ones in the linear expectation case.
In this paper, we characterize the extremal digraphs with the maximal or minimal $alpha$-spectral radius among some digraph classes such as rose digraphs, generalized theta digraphs and tri-ring digraphs with given size $m$. These digraph classes are denoted by $mathcal{R}_{m}^k$, $widetilde{boldsymbol{Theta}}_k(m)$ and $INF(m)$ respectively. The main results about spectral extremal digraph by Guo and Liu in cite{MR2954483} and Li and Wang in cite{MR3777498} are generalized to $alpha$-spectral graph theory. As a by-product of our main results, an open problem in cite{MR3777498} is answered. Furthermore, we determine the digraphs with the first three minimal $alpha$-spectral radius among all strongly connected digraphs. Meanwhile, we determine the unique digraph with the fourth minimal $alpha$-spectral radius among all strongly connected digraphs for $0le alpha le frac{1}{2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا