ﻻ يوجد ملخص باللغة العربية
We present observations and analysis of the massive molecular outflow G331.512-0.103, obtained with ALMA band 7, continuing the work from Merello et al. (2013). Several lines were identified in the observed bandwidth, consisting of two groups: lines with narrow profiles, tracing the emission from the core ambient medium; and lines with broad velocity wings, tracing the outflow and shocked gas emission. The physical and chemical conditions, such as density, temperature, and fractional abundances are calculated. The ambient medium, or core, has a mean density of $sim 5times 10^6$ cm$^{-3}$ and a temperature of $sim 70$ K. The SiO and SO$_2$ emission trace the very dense and hot part of the shocked outflow, with values of $n_{rm H_2}sim10^9$ cm$^{-3}$ and $T sim 160-200$ K. The interpretation of the molecular emission suggests an expanding cavity geometry powered by stellar winds from a new-born UCHII region, alongside a massive and high-velocity molecular outflow. This scenario, along with the estimated physical conditions, is modeled using the 3D geometry radiative transfer code MOLLIE for the SiO(J$=8-7$) molecular line. The main features of the outflow and the expanding shell are reproduced by the model.
Using APEX-1 and APEX-2 observations, we have detected and studied the rotational lines of the HC$_3$N molecule (cyanoacetylene) in the powerful outflow/hot molecular core G331.512-0.103. We identified thirty-one rotational lines at $J$ levels betwee
Isocyanic acid (HNCO) is a simple molecule with a potential to form prebiotic and complex organic species. Using a spectral survey collected with the Atacama Pathfinder EXperiment (APEX), in this work we report the detection of 42 transitions of HNCO
We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, towards 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 HII regions are identified,
Systematic surveys of massive clumps have been carried out to study the conditions leading to the formation of massive stars. These clumps are typically at large distances and unresolved, so their physical properties cannot be reliably derived from t
We report studies of the relationships between the total bolometric luminosity ($L_{rm bol}$ or $L_{rm TIR}$) and the molecular line luminosities of $J=1-0$ transitions of H$^{13}$CN, H$^{13}$CO$^+$, HCN, and HCO$^+$ with data obtained from ACA obser