ﻻ يوجد ملخص باللغة العربية
Quantum many-body systems exhibit a rich and diverse range of exotic behaviours, owing to their underlying non-classical structure. These systems present a deep structure beyond those that can be captured by measures of correlation and entanglement alone. Using tools from complexity science, we characterise such structure. We investigate the structural complexities that can be found within the patterns that manifest from the observational data of these systems. In particular, using two prototypical quantum many-body systems as test cases - the one-dimensional quantum Ising and Bose-Hubbard models - we explore how different information-theoretic measures of complexity are able to identify different features of such patterns. This work furthers the understanding of fully-quantum notions of structure and complexity in quantum systems and dynamics.
One of the key tasks in physics is to perform measurements in order to determine the state of a system. Often, measurements are aimed at determining the values of physical parameters, but one can also ask simpler questions, such as is the system in s
We demonstrate that arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the Hamiltonian can be controlled. The reversed dynamics obtained via optimal control --contrary to standard time-reversal proc
The resource theory of thermal operations, an established model for small-scale thermodynamics, provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lattice of any dimension with any translation-invariant local Hamil
We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements.
We show that the physical mechanism for the equilibration of closed quantum systems is dephasing, and identify the energy scales that determine the equilibration timescale of a given observable. For realistic physical systems (e.g those with local Ha