ﻻ يوجد ملخص باللغة العربية
We prove the existence and uniqueness of positive analytical solutions with positive initial data to the mean field equation (the Dyson equation) of the Dyson Brownian motion through the complex Burgers equation with a force term on the upper half complex plane. These solutions converge to a steady state given by Wigners semicircle law. A unique global weak solution with nonnegative initial data to the Dyson equation is obtained and some explicit solutions are given by Wigners semicircle laws. We also construct a bi-Hamiltonian structure for the system of the real and imaginary components of the complex Burgers equation (coupled Burgers system). We establish a kinetic formulation for the coupled Burgers system and prove the existence and uniqueness of entropy solutions. The coupled Burgers system in Lagrangian variable naturally leads to two interacting particle systems: Fermi-Pasta-Ulam-Tsingou model with nearest-neighbor interactions, and Calogero-Moser model. These two particle systems yield the same Lagrangian dynamics in the continuum limit.
This paper is concerned with the Cauchy problem of the Burgers equation with the critical dissipation. The well-posedness and analyticity in both of the space and the time variables are studied based on the frequency decomposition method. The large t
A Freidlin-Wentzell type large deviation principle is established for stochastic partial differential equations with slow and fast time-scales, where the slow component is a one-dimensional stochastic Burgers equation with small noise and the fast co
The paper is concerned with the time-periodic (T-periodic) problem of the fractal Burgers equation with a T-periodic force on the real line. Based on the Galerkin approximates and Fourier series (transform) methods, we first prove the existence of T-
We prove the existence and the uniqueness of strong solutions for the viscous Hamilton-Jacobi Equation with Neumann boundary condition and initial data a continious function. Then, we study the large time behavior of the solutions.
In this paper we analyze the large-time behavior of weak solutions to polytropic fluid models possibly including quantum and capillary effects. Formal a priori estimates show that the density of solutions to these systems should disperse with time. S