ترغب بنشر مسار تعليمي؟ اضغط هنا

NOMA Aided Narrowband IoT for Machine Type Communications with User Clustering

67   0   0.0 ( 0 )
 نشر من قبل Ali Shahini
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To support Machine Type Communications (MTC) in next generation mobile networks, NarrowBand-IoT (NB-IoT) has been released by the Third Generation Partnership Project (3GPP) as a promising solution to provide extended coverage and low energy consumption for low cost MTC devices. However, the existing Orthogonal Multiple Access (OMA) scheme in NB-IoT cannot provide connectivity for a massive number of MTC devices. In parallel with the development of NB-IoT, Non-Orthogonal Multiple Access (NOMA), introduced for the fifth generation wireless networks, is deemed to significantly improve the network capacity by providing massive connectivity through sharing the same spectral resources. To leverage NOMA in the context of NB-IoT, we propose a power domain NOMA scheme with user clustering for an NB-IoT system. In particular, the MTC devices are assigned to different ranks within the NOMA clusters where they transmit over the same frequency resources. Then, we formulate an optimization problem to maximize the total throughput of the network by optimizing the resource allocation of MTC devices and NOMA clustering while satisfying the transmission power and quality of service requirements. We prove the NP-hardness of the proposed optimization problem. We further design an efficient heuristic algorithm to solve the proposed optimization problem by jointly optimizing NOMA clustering and resource allocation of MTC devices. Furthermore, we prove that the reduced optimization problem of power control is a convex optimization task. Simulation results are presented to demonstrate the efficiency of the proposed scheme.



قيم البحث

اقرأ أيضاً

This paper proposes a tractable solution for integrating non-orthogonal multiple access (NOMA) into massive machine-type communications (mMTC) to increase the uplink connectivity. Multiple transmit power levels are provided at the user end to enable open-loop power control, which is absent from the traditional uplink NOMA with the fixed transmit power. The basics of this solution are firstly presented to analytically show the inherent performance gain in terms of the average arrival rate (AAR). Then, a practical framework based on a novel power map is proposed to associate a set of well-designed transmit power levels with each geographical region for handling the no instantaneous channel state information problem. Based on this framework, the semi-grant-free (semi-GF) transmission with two practical protocols is introduced to enhance the connectivity, which has higher AAR than both the conventional grand-based and GF transmissions. When the number of active GF devices in mMTC far exceeds the available resource blocks, the corresponding AAR tends to zero. To solve this problem, user barring techniques are employed into the semi-GF transmission to stable the traffic flow and thus increase the AAR. Lastly, promising research directions are discussed for improving the proposed networks.
A novel reconfigurable intelligent surface (RIS) aided non-orthogonal multiple access (NOMA) downlink transmission framework is proposed. We formulate a long-term stochastic optimization problem that involves a joint optimization of NOMA user partiti oning and RIS phase shifting, aiming at maximizing the sum data rate of the mobile users (MUs) in NOMA downlink networks. To solve the challenging joint optimization problem, we invoke a modified object migration automation (MOMA) algorithm to partition the users into equal-size clusters. To optimize the RIS phase-shifting matrix, we propose a deep deterministic policy gradient (DDPG) algorithm to collaboratively control multiple reflecting elements (REs) of the RIS. Different from conventional training-then-testing processing, we consider a long-term self-adjusting learning model where the intelligent agent is capable of learning the optimal action for every given state through exploration and exploitation. Extensive numerical results demonstrate that: 1) The proposed RIS-aided NOMA downlink framework achieves an enhanced sum data rate compared with the conventional orthogonal multiple access (OMA) framework. 2) The proposed DDPG algorithm is capable of learning a dynamic resource allocation policy in a long-term manner. 3) The performance of the proposed RIS-aided NOMA framework can be improved by increasing the granularity of the RIS phase shifts. The numerical results also show that reducing the granularity of the RIS phase shifts and increasing the number of REs are two efficient methods to improve the sum data rate of the MUs.
Monitoring of civil infrastructures is critically needed to track aging, damages and ultimately to prevent severe failures which can endanger many lives. The ability to monitor in a continuous and fine-grained fashion the integrity of a wide variety of buildings, referred to as structural health monitoring, with low-cost, long-term and continuous measurements is essential from both an economic and a life-safety standpoint. To address these needs, we propose a low-cost wireless sensor node specifically designed to support modal analysis over extended periods of time with long-range connectivity at low power consumption. Our design uses very cost-effective MEMS accelerometers and exploits the Narrowband IoT protocol (NB-IoT) to establish long-distance connection with 4G infrastructure networks. Long-range wireless connectivity, cabling-free installation and multi-year lifetime are a unique combination of features, not available, to the best of our knowledge, in any commercial or research device. We discuss in detail the hardware architecture and power management of the node. Experimental tests demonstrate a lifetime of more than ten years with a 17000 mAh battery or completely energy-neutral operation with a small solar panel (60 mm x 120 mm). Further, we validate measurement accuracy and confirm the feasibility of modal analysis with the MEMS sensors: compared with a high-precision instrument based on a piezoelectric transducer, our sensor node achieves a maximum difference of 0.08% at a small fraction of the cost and power consumption.
The introduction of Narrowband Internet of Things (NB-IoT) as a cellular IoT technology aims to support massive Machine-Type Communications applications. These applications are characterized by massive connections from a large number of low-complexit y and low-power devices. One of the goals of NB-IoT is to improve coverage extension beyond existing cellular technologies. In order to do that, NB-IoT introduces transmission repetitions and different bandwidth allocation configurations in uplink. These new transmission approaches yield many transmission options in uplink. In this paper, we propose analytical expressions that describe the influence of these new approaches in the transmission. Our analysis is based on the Shannon theorem. The transmission is studied in terms of the required Signal to Noise Ratio, bandwidth utilization, and energy per transmitted bit. Additionally, we propose an uplink link adaptation algorithm that contemplates these new transmission approaches. The conducted evaluation summarizes the influence of these approaches. Furthermore, we present the resulting uplink link adaptation from our proposed algorithm sweeping the devices coverage.
This paper proposes a millimeter wave-NOMA (mmWave-NOMA) system that takes into account the end-user signal processing capabilities, an important practical consideration. The implementation of NOMA in the downlink (DL) direction requires successive i nterference cancellation (SIC) to be performed at the user terminals, which comes at the cost of additional complexity. In NOMA, the weakest user only has to decode its own signal, while the strongest user has to decode the signals of all other users in the SIC procedure. Hence, the additional implementation complexity required of the user to perform SIC for DL NOMA depends on its position in the SIC decoding order. Beyond fifth-generation (B5G) communication systems are expected to support a wide variety of end-user devices, each with their own processing capabilities. We envision a system where users report their SIC decoding capability to the base station (BS), i.e., the number of other users signals a user is capable of decoding in the SIC procedure. We investigate the rate maximization problem in such a system, by breaking it down into a user clustering and ordering problem (UCOP), followed by a power allocation problem. We propose a NOMA minimum exact cover (NOMA-MEC) heuristic algorithm that converts the UCOP into a cluster minimization problem from a derived set of valid cluster combinations after factoring in the SIC decoding capability. The complexity of NOMA-MEC is analyzed for various algorithm and system parameters. For a homogeneous system of users that all have the same decoding capabilities, we show that this equates to a simple maximum number of users per cluster constraint and propose a lower complexity NOMA-best beam (NOMA-BB) algorithm. Simulation results demonstrate the performance superiority in terms of sum rate compared to orthogonal multiple access (OMA) and traditional NOMA
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا