ﻻ يوجد ملخص باللغة العربية
Fine-tuning chemistry by doping with transition metals enables new perspectives for exploring Kitaev physics on a two-dimensional (2D) honeycomb lattice of {alpha}-RuCl3, which is promising in the field of quantum information protection and quantum computation. The key parameters to vary by doping are both Heisenberg and Kitaev components of the nearest-neighbor exchange interaction between the Jeff = 1/2 Ru3+ spins, depending strongly on the peculiarities of the crystal structure. Here, we successfully grew single crystals of the solid solution series Ru1-xCrxCl3 with Cr3+ ions coupled to the Ru3+ Kitaev host using chemical vapour transport reaction. The Cr3+ substitution preserves the honeycomb type lattice of {alpha}-RuCl3 with mixed occupancy of Ru/Cr sites, no hints on cationic order within the layers were found by single crystal X-ray diffraction and transmission electron microscopy investigations. In contrast to the high quality single crystals of {alpha}-RuCl3 with ABAB ordered layers, the ternary compounds demonstrate a significant stacking disorder along the c-axis direction evidenced by X-ray diffraction and high resolution scanning transmission electron microscopy (HR-STEM). Raman spectra of substituted samples are in line with a symmetry conservation of the parent lattice upon chromium doping. At the same time, magnetic susceptibility data indicate that the Kitaev physics of {alpha}-RuCl3 is increasingly repressed by the dominant spin-only driven magnetism of Cr3+ in Ru1-xCrxCl3.
It is widely accepted that topological superconductors can only have an effective interpretation in terms of curved geometry rather than gauge fields due to their charge neutrality. This approach is commonly employed in order to investigate their pro
Kitaev-type interactions between neighbouring magnetic moments emerge in the honeycomb material ${alpha}$-RuCl3. It is debated however whether these Kitaev interactions are ferromagnetic or antiferromagnetic. With electron energy loss spectroscopy (E
We study the thermodynamic properties of modified spin-$S$ Kitaev models introduced by Baskaran, Sen and Shankar (Phys. Rev. B 78, 115116 (2008)). These models have the property that for half-odd-integer spins their eigenstates map on to those of spi
Muon spin rotation measurements have been performed on a powder sample of a-RuCl3, a layered material which previously has been proposed to be a quantum magnet on a honeycomb lattice close to a quantum spin liquid ground state. Our data reveal two di
We calculate magnon dispersions and damping in the Kitaev-Heisenberg model with an off-diagonal exchange $Gamma$ and isotropic third-nearest-neighbor interaction $J_3$ on a honeycomb lattice. This model is relevant to a description of the magnetic pr