ﻻ يوجد ملخص باللغة العربية
Wreath products of finite groups have permutation representations that are constructed from the permutation representations of their constituents. One can envision these in a metaphoric sense in which a rope is made from a bundle of threads. In this way, subgroups and quotients are easily visualized. The general idea is applied to the finite subgroups of the special unitary group of $(2times 2)$-matrices. Amusing diagrams are developed that describe the unit quaternions, the binary tetrahedral, octahedral, and icosahedral group as well as the dicyclic groups. In all cases, the quotients as subgroups of the permutation group are readily apparent. These permutation representations lead to injective homomorphisms into wreath products.
Let $G$ be a finitely generated group that can be written as an extension [ 1 longrightarrow K stackrel{i}{longrightarrow} G stackrel{f}{longrightarrow} Gamma longrightarrow 1 ] where $K$ is a finitely generated group. By a study of the BNS invariant
We prove that various subgroups of the mapping class group $Mod(Sigma)$ of a surface $Sigma$ are at least exponentially distorted. Examples include the Torelli group (answering a question of Hamenstadt), the point-pushing and surface braid subgroups,
The paper establishes new relationship between cohomology, extensions and automorphisms of quandles. We derive a four term exact sequence relating quandle 1-cocycles, second quandle cohomology and certain group of automorphisms of an abelian extensio
We prove that the cohomological dimension of the Torelli group for a closed connected orientable surface of genus g at least 2 is equal to 3g-5. This answers a question of Mess, who proved the lower bound and settled the case of g=2. We also find the
We discuss in this article a property of action of groups by isometries called well displacing. An action is said to be well displacing, if the displacement function is equivalent to the the displacement function for the action on the Cayley graph. W