ﻻ يوجد ملخص باللغة العربية
Machine Learning (ML) techniques are rapidly finding a place among the methods of High Energy Physics data analysis. Different approaches are explored concerning how much effort should be put into building high-level variables based on physics insight into the problem, and when it is enough to rely on low-level ones, allowing ML methods to find patterns without explicit physics model. In this paper we continue the discussion of previous publications on the CP state of the Higgs boson measurement of the H to tau tau decay channel with the consecutive tau^pm to rho^pm nu; rho^pm to pi^pm pi^0 and tau^pm to a_1^pm nu; a_1^pm to rho^0 pi^pm to 3 pi^pm cascade decays. The discrimination of the Higgs boson CP state is studied as a binary classification problem between CP-even (scalar) and CP-odd (pseudoscalar), using Deep Neural Network (DNN). Improvements on the classification from the constraints on directly non-measurable outgoing neutrinos are discussed. We find, that once added, they enhance the sensitivity sizably, even if only imperfect information is provided. In addition to DNN we also evaluate and compare other ML methods: Boosted Trees (BT), Random Forest (RF) and Support Vector Machine (SVN).
The consecutive steps of cascade decay initiated by H to tau tau can be useful for the measurement of Higgs couplings and in particular of the Higgs boson parity. In the previous papers we have found, that multi-dimensional signatures of the tau^pm t
In phenomenological preparation for new measurements one searches for the carriers of quality signatures. Often, the first approach quantities may be difficult to measure or to provide sufficiently precise predictions for comparisons. Complexity of
In this paper, we discuss application of the TauSpinner package as a simulation tool for measuring the CP state of the newly discovered Higgs boson using the transverse spin correlations in the H to tau tau decay channel. We discuss application for i
The issue of Hermiticity of the Higgs boson interaction with fermions is addressed. A model for non-Hermitian Yukawa interaction is proposed and approximation of one fermion generation is considered. Symmetry properties of the corresponding $h f bar{
In the Standard Model, the Higgs boson is a CP even state with CP conserving couplings; any deviations from this would be a sign of new physics. These CP properties can be probed by measuring Higgs decays to tau lepton pairs: the transverse correlati