ترغب بنشر مسار تعليمي؟ اضغط هنا

The Compact Linear e$^+$e$^-$ Collider (CLIC): Accelerator and Detector

88   0   0.0 ( 0 )
 نشر من قبل Aidan Robson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e$^+$e$^-$ collider under development by international collaborations hosted by CERN. This document provides an overview of the design, technology, and implementation aspects of the CLIC accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, for a site length ranging between 11 km and 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments, and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency and reduced power consumption of around 170 MW for the 380 GeV stage, together with a reduced cost estimate of approximately 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. The construction of the first CLIC energy stage could start as early as 2026 and first beams would be available by 2035, marking the beginning of a physics programme spanning 25-30 years and providing excellent sensitivity to Beyond Standard Model physics, through direct searches and via a broad set of precision measurements of Standard Model processes, particularly in the Higgs and top-quark sectors.



قيم البحث

اقرأ أيضاً

The Compact Linear Collider, CLIC, is a proposed e$^+$e$^-$ collider at the TeV scale whose physics potential ranges from high-precision measurements to extensive direct sensitivity to physics beyond the Standard Model. This document summarises the p hysics potential of CLIC, obtained in detailed studies, many based on full simulation of the CLIC detector. CLIC covers one order of magnitude of centre-of-mass energies from 350 GeV to 3 TeV, giving access to large event samples for a variety of SM processes, many of them for the first time in e$^+$e$^-$ collisions or for the first time at all. The high collision energy combined with the large luminosity and clean environment of the e$^+$e$^-$ collisions enables the measurement of the properties of Standard Model particles, such as the Higgs boson and the top quark, with unparalleled precision. CLIC might also discover indirect effects of very heavy new physics by probing the parameters of the Standard Model Effective Field Theory with an unprecedented level of precision. The direct and indirect reach of CLIC to physics beyond the Standard Model significantly exceeds that of the HL-LHC. This includes new particles detected in challenging non-standard signatures. With this physics programme, CLIC will decisively advance our knowledge relating to the open questions of particle physics.
The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, an d future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years.
84 - M. Aicheler 2019
The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development by international collaborations hosted by CERN. This document provides an overview of the design, technology, and implementation aspects of t he CLIC accelerator. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, for a site length ranging between 11 km and 50 km. CLIC uses a Two-Beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current Drive Beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments, and system tests have resulted insignificant progress in recent years. Moreover, this has led to an increased energy efficiency and reduced power consumption of around 170 MW for the 380 GeV stage, together with a reduced cost estimate of approximately 6 billion CHF. The construction of the first CLIC energy stage could start as early as 2026 and first beams would be available by 2035, marking the beginning of a physics programme spanning 25-30 years and providing excellent sensitivity to Beyond Standard Model physics, through direct searches and via a broad set of precision measurements of Standard Model processes, particularly in the Higgs and top-quark sectors.
The international Future Circular Collider (FCC) study aims at a design of $pp$, $e^+e^-$, $ep$ colliders to be built in a new 100 km tunnel in the Geneva region. The $e^+e^-$ collider (FCC-ee) has a centre of mass energy range between 90 (Z-pole) an d 375 GeV (tt_bar). To reach such unprecedented energies and luminosities, the design of the interaction region is crucial. The crab-waist collision scheme has been chosen for the design and it will be compatible with all beam energies. In this paper we will describe the machine detector interface layout including the solenoid compensation scheme. We will describe how this layout fulfills all the requirements set by the parameters table and by the physical constraints. We will summarize the studies of the impact of the synchrotron radiation, the analysis of trapped modes and of the backgrounds induced by single beam and luminosity effects giving an estimate of the losses in the interaction region and in the detector.
We present results from luminosity, energy and polarization studies at a future Linear Collider. We compare e+e- and e-e- modes of operation and consider both NLC and TESLA beam parameter specifications at a center-of-mass energy of 500 GeV. Realisti c colliding beam distributions are used, which include dynamic effects of the beam transport from the Damping Rings to the Interaction Point. Beam-beam deflections scans and their impact for beam-based feedbacks are considered. A transverse kink instability is studied, including its impact on determining the luminosity-weighted center-of-mass energy. Polarimetry in the extraction line from the IP is presented, including results on beam distributions at the Compton IP and at the Compton detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا