ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay rates and energies of free magnons and bound states in dissipative XXZ chains

61   0   0.0 ( 0 )
 نشر من قبل Christopher Parmee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chains of coupled two-level atoms behave as 1D quantum spin systems, exhibiting free magnons and magnon bound states. While these excitations are well studied for closed systems, little consideration has been given to how they are altered by the presence of an environment. This will be especially important in systems that exhibit nonlocal dissipation, e.g. systems in which the magnons decay due to optical emission. In this work, we consider free magnon excitations and two-magnon bound states in an XXZ chain with nonlocal dissipation. We prove that whilst the energy of the bound state can lie outside the two-magnon continuum of energies, the decay rate of the bound state has to always lie within the two-magnon continuum of decay rates. We then derive analytically the bound state solutions for a system with nearest-neighbour and next-nearest-neighbour XY interaction and nonlocal dissipation, finding that the inclusion of nonlocal dissipation allows more freedom in engineering the energy and decay rate dispersions for the bound states. Finally, we numerically study a model of an experimental set-up that should allow the realisation of dissipative bound states by using Rydberg-dressed atoms coupled to a photonic crystal waveguide (PCW). We demonstrate that this model can exhibit many key features of our simpler models.


قيم البحث

اقرأ أيضاً

354 - C. D. Parmee , N. R. Cooper 2019
We study theoretically a driven dissipative one-dimensional XXZ spin$-1/2$ chain with dipole coupling and a tunable strength of the Ising and XY interaction. Within a mean-field approximation, we find a rich phase diagram with uniform, spin density w ave, antiferromagnetic and oscillatory phases, as well as regions of phase bistability. We study the phase diagram of small quantum systems using exact diagonalisation, and compare the results to the mean-field theory. We find that while expectation values only capture the uniform phases of the mean-field theory, fluctuations about these expectation values give signatures of spatially non-uniform phases and bistabilities. We find these signatures for all ratios of the Ising to XY interaction, showing that they appear to be general features of spin$-1/2$ systems
Symmetry-broken electronic phases support neutral collective excitations. For example, monolayer graphene in the quantum Hall regime hosts a nearly ideal ferromagnetic phase at filling factor $ u=1$ that spontaneously breaks spin rotation symmetry. T his ferromagnet has been shown to support spin-wave excitations known as magnons which can be generated and detected electrically. While long-distance magnon propagation has been demonstrated via transport measurements, important thermodynamic properties of such magnon populations--including the magnon chemical potential and density--have thus far proven out of reach of experiments. Here, we present local measurements of the electron compressibility under the influence of magnons, which reveal a reduction of the $ u=1$ gap by up to 20%. Combining these measurements with estimates of the temperature, our analysis reveals that the injected magnons bind to electrons and holes to form skyrmions, and it enables extraction of the free magnon density, magnon chemical potential, and average skyrmion spin. Our methods furnish a novel means of probing the thermodynamic properties of charge-neutral excitations that is applicable to other symmetry-broken electronic phases.
Open many-body quantum systems have recently gained renewed interest in the context of quantum information science and quantum transport with biological clusters and ultracold atomic gases. A series of results in diverse setups is presented, based on a Master equation approach to describe the dissipative dynamics of ultracold bosons in a one-dimensional lattice. The creation of mesoscopic stable many-body structures in the lattice is predicted and the non-equilibrium transport of neutral atoms in the regime of strong and weak interactions is studied.
Under certain circumstances, three or more interacting particles may form bound states. While the general few-body problem is not analytically solvable, the so-called Efimov trimers appear for a system of three particles with resonant two-body intera ctions. The binding energies of these trimers are predicted to be universally connected to each other, independent of the microscopic details of the interaction. By exploiting a Feshbach resonance to widely tune the interactions between trapped ultracold lithium atoms, we find evidence for two universally connected Efimov trimers and their associated four-body bound states. A total of eleven precisely determined three- and four-body features are found in the inelastic loss spectrum. Their relative locations on either side of the resonance agree well with universal theory, while a systematic deviation from universality is found when comparing features across the resonance.
More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical rese arch while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we report on the direct observation of two-magnon bound states using in-situ correlation measurements in a one-dimensional Heisenberg spin chain realized with ultracold bosonic atoms in an optical lattice. We observe the quantum walk of free and bound magnon states through time-resolved measurements of the two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single magnon excitations. In our measurements, we also determine the decay time of bound magnons, which is most likely limited by scattering on thermal fluctuations in the system. Our results open a new pathway for studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا