ﻻ يوجد ملخص باللغة العربية
We present an update on the calculation of $bar{B}to D^ast ell bar{ u}$ semileptonic form factor at zero recoil using the Oktay-Kronfeld bottom and charm quarks on $N_f=2+1+1$ flavor HISQ ensembles generated by the MILC collaboration. Preliminary results are given for two ensembles with $aapprox 0.12$ and $0.09$ fm and $M_piapprox 310$ MeV. Calculations have been done with a number of valence quark masses, and the dependence of the form factor on them is investigated on the $aapprox 0.12$ fm ensemble. The excited state is controlled by using multistate fits to the three-point correlators measured at 4--6 source-sink separations.
We report recent progress in calculating semileptonic form factors for the $bar{B} to D^ast ell bar{ u}$ and $bar{B} to D ell bar{ u}$ decays using the Oktay-Kronfeld (OK) action for bottom and charm quarks. We use the second order in heavy quark eff
We present preliminary blinded results from our analysis of the form factors for $Brightarrow D^astell u$ decay at non-zero recoil. Our analysis includes 15 MILC asqtad ensembles with $N_f=2+1$ flavors of sea quarks and lattice spacings ranging from
The current status of the lattice-QCD calculations of the form factors of the $Bto D^astell u$ semileptonic decay is reviewed. Particular emphasis is given to the most mature calculation at non-zero recoil coming from the Fermilab Lattice and MILC co
The exclusive semileptonic decay $B rightarrow pi ell u$ is a key process for the determination of the Cabibbo-Kobayashi-Maskawa matrix element $V_{ub}$ from the comparison of experimental rates as a function of $q^2$ with theoretically determined f
We present nearly final results from our analysis of the form factors for $Bto D^astell u$ decay at nonzero recoil. Our analysis includes 15 MILC asqtad ensembles with $N_f=2+1$ flavors of sea quarks and lattice spacings ranging from $aapprox0.15$ fm