ترغب بنشر مسار تعليمي؟ اضغط هنا

The Liquidus Temperature for Methanol-Water Mixtures at High Pressure and Low Temperature, with Application to Titan

107   0   0.0 ( 0 )
 نشر من قبل Andrew Dougherty
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Methanol is a potentially important impurity in subsurface oceans on Titan and Enceladus. We report measurements of the freezing of methanol-water samples at pressures up to 350~MPa using a volumetric cell with sapphire windows. For low concentrations of methanol, the liquidus temperature is typically a few degrees below the corresponding ice freezing point, while at high concentrations it follows the pure methanol trend. In the Ice-III regime, we observe several long-lived metastable states. The results suggest that methanol is a more effective antifreeze than previously estimated, and might have played an important role in the development of Titans subsurface ocean.

قيم البحث

اقرأ أيضاً

Due to its low atomic mass hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of a record su perconducting critical temperature of 190 K in a hydrogen-sulfur compound at 200 GPa of pressure[1], shows that metallization of hydrogen can be reached at significantly lower pressure by inserting it in the matrix of other elements. In this work we re-investigate the phase diagram and the superconducting properties of the H-S system by means of minima hopping method for structure prediction and Density Functional theory for superconductors. We also show that Se-H has a similar phase diagram as its sulfur counterpart as well as high superconducting critical temperature. We predict SeH3 to exceed 120 K superconductivity at 100 GPa. We show that both SeH3 and SH3, due to the critical temperature and peculiar electronic structure, present rather unusual superconducting properties.
Two hydrogen-rich materials, H$_3$S and LaH$_{10}$, synthesized at megabar pressures, have revolutionized the field of condensed matter physics providing the first glimpse to the solution of the hundred-year-old problem of room temperature supercondu ctivity. The mechanism underlying superconductivity in these exceptional compounds is the conventional electron-phonon coupling. Here we describe recent advances in experimental techniques, superconductivity theory and first-principles computational methods which have made possible these discoveries. This work aims to provide an up-to-date compendium of the available results on superconducting hydrides and explain how the synergy of different methodologies led to extraordinary discoveries in the field. Besides, in an attempt to evidence empirical rules governing superconductivity in binary hydrides under pressure, we discuss general trends in the electronic structure and chemical bonding. The last part of the Review introduces possible strategies to optimize pressure and transition temperatures in conventional superconducting materials as well as future directions in theoretical, computational and experimental research.
We explore the effects of composition and temperature on the apparent molar volumes of species of water-methanol mixtures. Isothermal-isobaric molecular dynamics simulations are used with this purpose. Several combinations of models for water and for methanol are explored. Validity of predictions concerned with a puzzling minimum of apparent molar volume of methanol in water-rich solutions is tested against experimental results.
59 - T. F. Schulze 2007
We prove the direct link between low temperature magnetism and high temperature sodium ordering in NaxCoO2 using the example of a heretofore unreported magnetic transition at 8 K which involves a weak ferromagnetic moment. The 8 K feature is characte rized in detail and its dependence on a diffusive sodium rearrangement around 200 K is demonstrated. Applying muons as local probes this process is shown to result in a reversible phase separation into distinct magnetic phases that can be controlled by specific cooling protocols. Thus the impact of ordered sodium Coulomb potential on the CoO2 physics is evidenced opening new ways to experimentally revisit the NaxCoO2 phase diagram.
There have existed for a long time a paradigm that TiO phases at ambient conditions are stable only if structural vacancies are available. Using an evolutionary algorithm, we perform an ab initio search of possible zero-temperature polymorphs of TiO in wide pressure interval. We obtain the Gibbs energy of the competing phases taking into account entropy via quasiharmonic approximation and build the pressure-temperature diagram of the system. We reveal that two vacancy-free hexagonal phases are the most stable at relatively low temperatures in a wide range of pressures. The transition between these phases takes place at 28 GPa. Only above 1290 K at ambient pressure the phases with vacancies (B1-derived) become stable. In particular, the high-pressure hexagonal phase is shown to have unusual electronic properties, with a pronounced pseudo-gap in the electronic spectrum. The comparison of DFT-GGA and GW calculations demonstrates that the account for many-body corrections significantly changes the electronic spectrum near the Fermi energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا