ﻻ يوجد ملخص باللغة العربية
We consider the split convex feasibility problem in a fixed point setting. Motivated by the well-known CQ-method of Byrne (2002), we define an abstract andweber transform which applies to more general operators than the metric projection. We call the result of this transform a Landweber operator. It turns out that the Landweber transform preserves many interesting properties. For example, the Landweber transform of a (quasi/firmly) nonexpansive mapping is again (quasi/firmly) nonexpansive. Moreover, the Landweber transform of a (weakly/linearly) regular mapping is again (weakly/linearly) regular. The preservation of regularity is important because it leads to (weak/linear) convergence of many CQ-type methods.
The aim of this paper is to investigate the use of an entropic projection method for the iterative regularization of linear ill-posed problems. We derive a closed form solution for the iterates and analyze their convergence behaviour both in a case o
The Barzilai-Borwein (BB) method has demonstrated great empirical success in nonlinear optimization. However, the convergence speed of BB method is not well understood, as the known convergence rate of BB method for quadratic problems is much worse t
In this paper, we aim to provide a comprehensive analysis on the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a certain error bound co
In this paper, we conduct a convergence rate analysis of the augmented Lagrangian method with a practical relative error criterion designed in Eckstein and Silva [Math. Program., 141, 319--348 (2013)] for convex nonlinear programming problems. We sho
Our aim is to present several properties of a Landweber operator and of a Landweber-type operator. These operators are widely used in methods for solving the split feasibility problem and the split common fixed point problem. The presented properties