ﻻ يوجد ملخص باللغة العربية
In this work we use solar observations with the ALMA radio telescope at the wavelength of 1.21 mm. The aim of the analysis is to improve understanding of the solar chromosphere, a dynamic layer in the solar atmosphere between the photosphere and corona. The study has an observational and a modeling part. In the observational part full-disc solar images are analyzed. Based on a modified FAL atmospheric model, radiation models for various observed solar structures are developed. Finally, the observational and modeling results are compared and discussed.
We present the first high-resolution Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a sunspot at wavelengths of 1.3 mm and 3 mm, obtained during the solar ALMA Science Verification campaign in 2015, and compare them with the pred
The Atacama Large Millimeter-Submillimeter Array (ALMA) has opened a new window for studying the Sun via high-resolution high-sensitivity imaging at millimeter wavelengths. In this contribution I review the capabilities of the instrument for solar ob
By direct measurements of the gas temperature, the Atacama Large Millimeter/sub-millimeter Array (ALMA) has yielded a new diagnostic tool to study the solar chromosphere. Here we present an overview of the brightness-temperature fluctuations from sev
We present observational constraints on the solar chromospheric heating contribution from acoustic waves with frequencies between 5 and 50 mHz. We utilize observations from the Dunn Solar Telescope in New Mexico complemented with observations from th
We propose and employ a novel empirical method for determining chromospheric plage regions, which seems to better isolate plage from its surrounding regions compared to other methods commonly used. We caution that isolating plage from its immediate s