ﻻ يوجد ملخص باللغة العربية
We propose a renormalizable $T$ flavor model based on the $SU(3)_Ctimes SU(3)_Ltimes U(1)_Xtimes U(1)_{mathcal{L}}$ gauge symmetry, consistent with the observed pattern of lepton masses and mixings. The small masses of the light active neutrinos are produced from an interplay of type I and type II seesaw mechanisms, which are induced by three heavy right-handed Majorana neutrinos and three $SU(3)_L$ scalar antisextets, respectively. Our model is only viable for the scenario of normal neutrino mass hierarchy, where the obtained physical observables of the lepton sector are highly consistent with the current neutrino oscillation experimental data. In addition, our model also predicts an effective Majorana neutrino mass parameter of $m_{beta} sim 1.41541times 10^{-2}$ eV, a Jarlskog invariant of the order of $J_{CP}sim -0.032$ and a leptonic Dirac CP violating phase of $de = 238^circ$, which is inside the $1sigma$ experimentally allowed range.
We propose a predictive model based on the $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ gauge symmetry, which is supplemented by the $D_4$ family symmetry and several auxiliary cyclic symmetries whose spontaneous breaking produces the observed SM fermion mass
After the LHC is turning on and accumulating more data, the TeV scale seesaw mechanisms for small neutrino masses in the form of inverse seesaw mechanisms are gaining more and more attention once they provide neutrino masses at sub-eV scale and can b
Neutrino are massless in the Standard Model. The most popular mechanism to generate neutrino masses are the type I and type II seesaw, where right-handed neutrinos and a scalar triplet are augmented to the Standard Model, respectively. In this work,
A new model for tiny neutrino masses is proposed in the gauge theory of $SU(3)_C otimes SU(3)_L otimes U(1)_X$, where neutrino masses are generated via the quantum effect of new particles. In this model, the fermion content is taken to be minimal to
By adding new gauge singlets of neutral leptons, the improv