ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrarelativistic electron beam polarization in single-shot interaction with an ultraintense laser pulse

410   0   0.0 ( 0 )
 نشر من قبل Jianxing Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-polarization of an ultrarelativistic electron beam head-on colliding with an ultraintense laser pulse is investigated in the quantum radiation-reaction regime. We develop a Monte-Carlo method to model electron radiative spin effects in arbitrary electromagnetic fields by employing spin-resolved radiation probabilities in the local constant field approximation. Due to spin-dependent radiation reaction, the applied elliptically polarized laser pulse polarizes the initially unpolarized electron beam and splits it along the propagation direction into two oppositely transversely polarized parts with a splitting angle of about tens of milliradians. Thus, a dense electron beam with above 70% polarization can be generated in tens of femtoseconds. The proposed method demonstrates a way for relativistic electron beam polarization with currently achievable laser facilities.


قيم البحث

اقرأ أيضاً

Stochasticity effects in the spin (de)polarization of an ultrarelativistic electron beam during photon emissions in a counterpropoagating ultrastrong focused laser pulse in the quantum radiation reaction regime are investigated. We employ a Monte Car lo method to describe the electron dynamics semiclassically, and photon emissions as well as the electron radiative polarization quantum mechanically. While in the latter the photon emission is inherently stochastic, we were able to identify its imprints in comparison with the new developed semiclassical stochasticity-free method of radiative polarization applicable in the quantum regime. With an initially spin-polarized electron beam, the stochastic spin effects are seen in the dependence of the depolarization degree on the electron scattering angle and the electron final energy (spin stochastic diffusion). With an initially unpolarized electron beam, the spin stochasticity is exhibited in enhancing the known effect of splitting of the electron beam along the propagation direction into two oppositely polarized parts by an elliptically polarized laser pulse. The considered stochasticity effects for the spin are observable with currently achievable laser and electron beam parameters.
160 - Suo Tang , Naveen Kumar 2018
We develop an analytical model for ultraintense attosecond pulse emission in the highly relativistic laser-plasma interaction. In this model, the attosecond pulse is emitted by a strongly compressed electron layer around the instant when the layer tr ansverse current changes the sign and its longitudinal velocity approaches the maximum. The emitted attosecond pulse has a broadband exponential spectrum and a stabilized constant spectral phase $psi(omega)=pmpi/2-psi_{A_m}$. The waveform of the attosecond pulse is also given explicitly, to our knowledge, for the first time. We validate the analytical model via particle-in-cell (PIC) simulations for both normal and oblique incidence. Based on this model, we highlight the potential to generate an isolated ultraintense phase-stabilized attosecond pulse
Relativistic spin-polarized positron beams are indispensable for future electron-positron colliders to test modern high-energy physics theory with high precision. However, present techniques require very large scale facilities for those experiments. We put forward a novel efficient way for generating ultrarelativistic polarized positron beams employing currently available laser fields. For this purpose the generation of polarized positrons via multiphoton Breit-Wheeler pair production and the associated spin dynamics in single-shot interaction of an ultraintense laser pulse with an ultrarelativistic electron beam is investigated in the quantum radiation-dominated regime. A specifically tailored small ellipticity of the laser field is shown to promote splitting of the polarized particles along the minor axis of laser polarization into two oppositely polarized beams. In spite of radiative de-polarization, a dense positron beam with up to about 90% polarization can be generated in tens of femtoseconds. The method may eventually usher high-energy physics studies into smaller-scale laser laboratories.
We investigate the generation of twin $gamma$ ray beams in collision of an ultrahigh intensity laser pulse with a laser wakefield accelerated electron beam by using particle-in-cell simulation. We consider the composed target of a homogeneous underde nse preplasma in front of an ultrathin solid foil. The electrons in the preplasma are trapped and accelerated by the wakefield. When the laser pulse is reflected by the thin solid foil, the wakefield accelerated electrons continue to move forward and passing through the foil almost without the influence of the reflected laser pulse and the foil. Consequently, two groups of $gamma$ ray flashes, with tunable time delay and energy, are generated by the wakefield accelerated electron beam interacting with the reflected laser pulse from the foil as well as another counter propagating petawatt laser pulse in the behind the foil. The dependence of the $gamma$ photon emission on the preplasma densities, driving laser polarization and the foil are studied.
Impacts of spin-polarization of an ultrarelativistic electron beam head-on colliding with a strong laser pulse on emitted photon spectra and electron dynamics have been investigated in the quantum radiation regime. We simulate photon emissions quantu m mechanically and electron dynamics semiclassically via taking spin-resolved radiation probabilities in the local constant field approximation. A small ellipticity of the laser field brings about an asymmetry in angle-resolved photon spectrum, which sensitively relies on the polarization of the electron beam. The asymmetry is particularly significant in high-energy photon spectra, and is employed for the polarization detection of a high-energy electron beam with extraordinary precision, e.g., better than 0.3% for a few-GeV electron beam at a density of the scale of $10^{16}$ cm$^{-3}$ with currently available strong laser fields. This method demonstrates for the first time a way of single-shot determination of polarization for ultrarelativistic electron beams via nonlinear Compton scattering. A similar method based on the asymmetry in the electron momentum distribution after the interaction due to spin-dependent radiation reaction is proposed as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا