ترغب بنشر مسار تعليمي؟ اضغط هنا

First principles study of hBN-AlN short-period superlattice heterostructures

58   0   0.0 ( 0 )
 نشر من قبل Catalin D. Spataru
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a theoretical study of the structural, electronic and optical properties of hBN-AlN superlattice heterostructures (SL) using a first-principles approach based on standard and hybrid Density Functional Theory. We consider short-period ($L<10$ nm) SL and find that their properties depend strongly on the AlN layer thickness $L_{AlN}$. For $L_{AlN}lesssim1$ nm, AlN stabilizes into the hexagonal phase and SL display insulating behavior with type II interface band alignment and optical gaps as small as $5.2$ eV. The wurtzite phase forms for thicker AlN layers. In these cases built-in electric fields lead to formation of polarization compensating charges as well as two-dimensional conductive behavior for electronic transport along interfaces. We also find defect-like states localized at interfaces which are optically active in the visible range.



قيم البحث

اقرأ أيضاً

This work is the first step towards understanding thermionic transport properties of graphene/phosphorene/graphene van der Waals heterostructures in contact with gold electrodes by using density functional theory based first principles calculations c ombined with real space Greens function formalism. We show that for monolayer phosphorene in the heterostructure, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling dominated transport to thermionic dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices.
We investigate half-metallicity in [001] stacked (CrAs)$_n$/(GaAs)$_n$ heterostructures with $n leq 3$ by means of a combined many-body and electronic structure calculation. Interface states in the presence of strong electronic correlations are discu ssed for the case $n=1$. For $n=2,3$ our results indicate that the minority spin half-metallic gap is suppressed by local correlations at finite temperatures, and continuously shrinks upon increasing the heterostructure period. Although around room temperature the magnetization of the heterostructure deviates by only $2%$ from the ideal integer value, finite temperature polarization at $E_F$ is reduced by at least $25%$. Below the Fermi level the minority spin highest valence states are found to localize more on the GaAs layers while lowest conduction states have a many-body origin. Our results, therefore, suggest that in these heterostructures holes and electrons remain separated among different layers.
High Curie temperature of 900 K has been reported in Cr-doped AlN diluted magnetic semiconductors prepared by various methods, which is exciting for spintronic applications. It is believed that N defects play important roles in achieving the high tem perature ferromagnetism in good samples. Motivated by these experimental advances, we use a full-potential density-functional-theory method and supercell approach to investigate N defects and their effects on ferromagnetism of (Al,Cr)N with N vacancies (V_N). Calculated results are in agreement with experimental observations and facts of real Cr-doped AlN samples and their synthesis. Our first-principles results are useful to elucidating the mechanism for the ferromagnetism and exploring high-performance Cr-doped AlN diluted magnetic semiconductors.
87 - Seong-Gon Kim , I.I. Mazin , 1997
We report first principles LDA calculations of the electronic structure and thermoelectric properties of $beta $-Zn$_{4}$Sb$_{3}$. The material is found to be a low carrier density metal with a complex Fermi surface topology and non-trivial dependenc e of Hall concentration on band filling. The band structure is rather covalent, consistent with experimental observations of good carrier mobility. Calculations of the variation with band filling are used to extract the doping level (band filling) from the experimental Hall number. At this band filling, which actually corresponds to 0.1 electrons per 22 atom unit cell, the calculated thermopower and its temperature dependence are in good agreement with experiment. The high Seebeck coefficient in a metallic material is remarkable, and arises in part from the strong energy dependence of the Fermiology near the experimental band filling. Improved thermoelectric performance is predicted for lower doping levels which corresponds to higher Zn concentrations.
179 - Bradley A. Foreman 2003
In this paper a multi-band envelope-function Hamiltonian for lattice-matched semiconductor heterostructures is derived from first-principles norm-conserving pseudopotentials. The theory is applicable to isovalent or heterovalent heterostructures with macroscopically neutral interfaces and no spontaneous bulk polarization. The key assumption -- proved in earlier numerical studies -- is that the heterostructure can be treated as a weak perturbation with respect to some periodic reference crystal, with the nonlinear response small in comparison to the linear response. Quadratic response theory is then used in conjunction with k.p perturbation theory to develop a multi-band effective-mass Hamiltonian (for slowly varying envelope functions) in which all interface band-mixing effects are determined by the linear response. To within terms of the same order as the position dependence of the effective mass, the quadratic response contributes only a bulk band offset term and an interface dipole term, both of which are diagonal in the effective-mass Hamiltonian. Long-range multipole Coulomb fields arise in quantum wires or dots, but have no qualitative effect in two-dimensional systems beyond a dipole contribution to the band offsets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا