ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic Serendipity: A Test of Unsupervised Machine Learning as a Method for Anomaly Detection

108   0   0.0 ( 0 )
 نشر من قبل Daniel Giles
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advances in astronomy are often driven by serendipitous discoveries. As survey astronomy continues to grow, the size and complexity of astronomical databases will increase, and the ability of astronomers to manually scour data and make such discoveries decreases. In this work, we introduce a machine learning-based method to identify anomalies in large datasets to facilitate such discoveries, and apply this method to long cadence lightcurves from NASAs Kepler Mission. Our method clusters data based on density, identifying anomalies as data that lie outside of dense regions. This work serves as a proof-of-concept case study and we test our method on four quarters of the Kepler long cadence lightcurves. We use Keplers most notorious anomaly, Boyajians Star (KIC 8462852), as a rare `ground truth for testing outlier identification to verify that objects of genuine scientific interest are included among the identified anomalies. We evaluate the methods ability to identify known anomalies by identifying unusual behavior in Boyajians Star, we report the full list of identified anomalies for these quarters, and present a sample subset of identified outliers that includes unusual phenomena, objects that are rare in the Kepler field, and data artifacts. By identifying <4% of each quarter as outlying data, we demonstrate that this anomaly detection method can create a more targeted approach in searching for rare and novel phenomena.



قيم البحث

اقرأ أيضاً

In this work we show that modern data-driven machine learning techniques can be successfully applied on lunar surface remote sensing data to learn, in an unsupervised way, sufficiently good representations of the data distribution to enable lunar tec hnosignature and anomaly detection. In particular we train an unsupervised distribution learning neural network model to find the Apollo 15 landing module in a testing dataset, with no dataset specific model or hyperparameter tuning. Sufficiently good unsupervised data density estimation has the promise of enabling myriad useful downstream tasks, including locating lunar resources for future space flight and colonization, finding new impact craters or lunar surface reshaping, and algorithmically deciding the importance of unlabeled samples to send back from power- and bandwidth-constrained missions. We show in this work that such unsupervised learning can be successfully done in the lunar remote sensing and space science contexts.
Every field of Science is undergoing unprecedented changes in the discovery process, and Astronomy has been a main player in this transition since the beginning. The ongoing and future large and complex multi-messenger sky surveys impose a wide explo iting of robust and efficient automated methods to classify the observed structures and to detect and characterize peculiar and unexpected sources. We performed a preliminary experiment on KiDS DR4 data, by applying to the problem of anomaly detection two different unsupervised machine learning algorithms, considered as potentially promising methods to detect peculiar sources, a Disentangled Convolutional Autoencoder and an Unsupervised Random Forest. The former method, working directly on images, is considered potentially able to identify peculiar objects like interacting galaxies and gravitational lenses. The latter instead, working on catalogue data, could identify objects with unusual values of magnitudes and colours, which in turn could indicate the presence of singularities.
Cosmic ray detectors use air as a radiator for luminescence. In water and ice, Cherenkov light is the dominant light producing mechanism when the particles velocity exceeds the Cherenkov threshold, approximately three quarters of the speed of light i n vacuum. Luminescence is produced by highly ionizing particles passing through matter due to the electronic excitation of the surrounding molecules. The observables of luminescence, such as the wavelength spectrum and decay times, are highly dependent on the properties of the medium, in particular, temperature and purity. The results for the light yield of luminescence of previous measurements vary by two orders of magnitude. It will be shown that even for the lowest measured light yield, luminescence is an important signature of highly ionizing particles below the Cherenkov threshold. These could be magnetic monopoles or other massive and highly ionizing exotic particles. With the highest observed efficiencies, luminescence may even contribute significantly to the light output of standard model particles such as the PeV IceCube neutrinos. We present analysis techniques to use luminescence in neutrino telescopes and discuss experimental setups to measure the light yield of luminescence for the particular conditions in neutrino detectors.
Despite the superior performance in modeling complex patterns to address challenging problems, the black-box nature of Deep Learning (DL) methods impose limitations to their application in real-world critical domains. The lack of a smooth manner for enabling human reasoning about the black-box decisions hinder any preventive action to unexpected events, in which may lead to catastrophic consequences. To tackle the unclearness from black-box models, interpretability became a fundamental requirement in DL-based systems, leveraging trust and knowledge by providing ways to understand the models behavior. Although a current hot topic, further advances are still needed to overcome the existing limitations of the current interpretability methods in unsupervised DL-based models for Anomaly Detection (AD). Autoencoders (AE) are the core of unsupervised DL-based for AD applications, achieving best-in-class performance. However, due to their hybrid aspect to obtain the results (by requiring additional calculations out of network), only agnostic interpretable methods can be applied to AE-based AD. These agnostic methods are computationally expensive to process a large number of parameters. In this paper we present the RXP (Residual eXPlainer), a new interpretability method to deal with the limitations for AE-based AD in large-scale systems. It stands out for its implementation simplicity, low computational cost and deterministic behavior, in which explanations are obtained through the deviation analysis of reconstructed input features. In an experiment using data from a real heavy-haul railway line, the proposed method achieved superior performance compared to SHAP, demonstrating its potential to support decision making in large scale critical systems.
Machine learning may enable the automated generation of test oracles. We have characterized emerging research in this area through a systematic literature review examining oracle types, researcher goals, the ML techniques applied, how the generation process was assessed, and the open research challenges in this emerging field. Based on a sample of 22 relevant studies, we observed that ML algorithms generated test verdict, metamorphic relation, and - most commonly - expected output oracles. Almost all studies employ a supervised or semi-supervised approach, trained on labeled system executions or code metadata - including neural networks, support vector machines, adaptive boosting, and decision trees. Oracles are evaluated using the mutation score, correct classifications, accuracy, and ROC. Work-to-date show great promise, but there are significant open challenges regarding the requirements imposed on training data, the complexity of modeled functions, the ML algorithms employed - and how they are applied - the benchmarks used by researchers, and replicability of the studies. We hope that our findings will serve as a roadmap and inspiration for researchers in this field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا