ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicity Methods for High Multiplicity Subleading Soft and Collinear Limits

62   0   0.0 ( 0 )
 نشر من قبل Gherardo Vita
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The factorization of multi-leg gauge theory amplitudes in the soft and collinear limits provides strong constraints on the structure of amplitudes, and enables efficient calculations of multi-jet observables at the LHC. There is significant interest in extending this understanding to include subleading powers in the soft and collinear limits. While this has been achieved for low point amplitudes, for higher point functions there is a proliferation of variables and more complicated phase space, making the analysis more challenging. By combining the subleading power expansion of spinor-helicity variables in collinear limits with consistency relations derived from the soft collinear effective theory, we show how to efficiently extract the subleading power leading logarithms of $N$-jet event shape observables directly from known spinor-helicity amplitudes. At subleading power, we observe the presence of power law singularities arising solely from the expansion of the amplitudes, which for hadron collider event shapes lead to the presence of derivatives of parton distributions. The techniques introduced here can be used to efficiently compute the power corrections for $N$-jettiness subtractions for processes involving jets at the LHC.



قيم البحث

اقرأ أيضاً

Starting from the first renormalized factorization theorem for a process described at subleading power in soft-collinear effective theory, we discuss the resummation of Sudakov logarithms for such processes in renormalization-group improved perturbat ion theory. Endpoint divergences in convolution integrals, which arise generically beyond leading power, are regularized and removed by systematically rearranging the factorization formula. We study in detail the example of the $b$-quark induced $htogammagamma$ decay of the Higgs boson, for which we resum large logarithms of the ratio $M_h/m_b$ at next-to-leading logarithmic order. We also briefly discuss the related $ggto h$ amplitude.
QCD strings originate from high-energy scattering in the form of Reggeons and Pomerons, and have been studied in some detail in lattice numerical simulations. Production of multiple strings, with their subsequent breaking, is now a mainstream model o f high energy $pp$ and $pA$ collisions. Recent LHC experiments revealed that high multiplicity end of such collisions show interesting collective effects. This ignited an interest in the interaction of QCD strings and multi-string dynamics. Holographic models, collectively known as AdS/QCD, developed in the last decade, describe both hadronic spectroscopy and basic thermodynamics, but so far no studies of the QCD strings have been done in this context. The subject of this paper is to do this. First, we study in more detail the scalar sector of hadronic spectroscopy, identifying glueballs and scalar mesons, and calculate the degree of their mixing. The QCD strings, holographic images of the fundamental strings, thus have a gluonic core and a sigma cloud. The latter generates $sigma$ exchanges and collectivization of the strings, affecting, at a certain density, the chiral condensate and even the minimum of the effective string potential, responsible for the very existence of the QCD strings. Finally, we run dynamical simulations of the multi-string systems, in the spaghetti setting approximating central $pA$ collisions, and specify conditions for their collectivization into a black hole, or the dual QGP fireball.
Holographic AdS/QCD models of the Pomeron unite a string-based description of hadronic reactions of the pre-QCD era with the perturbative BFKL approach. The specific version we will use due to Stoffers and Zahed, is based on a semiclassical quantizat ion of a tube (closed string exchange or open string virtual pair production) in its Euclidean formulation using the scalar Polyakov action. This model has a number of phenomenologically successful results. The periodicity of a coordinate around the tube allows the introduction of a Matsubara time and therefore an effective temperature Teff on the string. We observe that at the LHC energies and for sufficiently small impact parameter, Teff approaches and even exceeds the Hagedorn temperature of the QCD strings. Based on studies of the stringy thermodynamics of pure gauge theories we suggest that there should exist two new regimes of the Pomeron: the near-critical and the post-critical ones. In the former one, string excitations create a high entropy string ball, with high energy and entropy but small pressure/free energy. If heavy enough this ball becomes a (dual) black hole (BH). As the intrinsic temperature of the string exceeds the Hagedorn temperature, the ball becomes a post-critical explosive QGP ball. The hydrodynamical explosion resulting from this scenario was predicted by us to have radial flow exceeding that ever seen even in heavy ion collisions, which was recently confirmed by CMS and ALICE at LHC. We also discuss the elastic scattering profile, finding some hints for new phases in it, as well as two-particle correlations.
We study the early stages of central pA and peripheral AA collisions. Several observables indicate that at a sufficiently large number of participant nucleons the system undergoes a transition into a new explosive regime. By defining a string-string interaction through the sigma meson exchange and performing molecular dynamics simulation, we argue that one should expect a strong collective implosion of the multi-string spaghetti state, creating significant compression of the system in the transverse plane. Another consequence is the collectivization of the sigma clouds of all strings into a chirally symmetric fireball. We find that these effects happen provided the number of strings $N_s > 30$ or so, as only such a number can compensate a small sigma-string coupling. These findings should help us to understand the subsequent explosive behavior, observed for the particle multiplicities roughly corresponding to this number of strings.
We show that the form of the recently proposed subleading soft graviton and gluon theorems in any dimension are severely constrained by elementary arguments based on Poincare and gauge invariance as well as a self-consistency condition arising from t he distributional nature of scattering amplitudes. Combined with the assumption of a local form as it would arise from a Ward identity the orbital part of the subleading operators is completely fixed by the leading universal Weinberg soft pole behavior. The polarization part of the differential subleading soft operators in turn is determined up to a single numerical factor for each hard leg at every order in the soft momentum expansion. In four dimensions, factorization of the Lorentz group allows to fix the subleading operators completely.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا