ﻻ يوجد ملخص باللغة العربية
Recently the discovery of magnetic order in two-dimensional monolayer chromium trihalides opens the new research field in two-dimensional materials. We use first-principles calculations to systematically examine the doping effect of chalcogen on CrBr3. In the case of S-doping, four stable configurations, Cr2Br5S, Cr2Br4S2-A, Cr2Br4S2-B and Cr2Br3S3-A, are predicted to be ferromagnetic semiconductors. It is found that the new bands appearing in the original bandgap are made up of S-p and Cr-d-egorbits, lead to the obvious reduce of bandgap and the enhanced optical absorption in the visible range. Due to the decrease of valence electron after chalcogen doping, the magnetic moment also decreases with the increase of S atoms, and the character of ferromagnetic semiconductor is always hold in a wide range of strain. The results shown that monolayer CrBr3with chalcogen doping supply a effectual way to control the magnetism and extend the optoelectronic applications.
The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nanoelectronic devices. Since the first isolation of graphene, a Dirac material
Twist engineering, or the alignment of two-dimensional (2D) crystalline layers with desired orientations, has led to tremendous success in modulating the charge degree of freedom in hetero- and homo-structures, in particular, in achieving novel corre
Modulation-doped oxide two-dimensional electron gas (2DEG) formed at the LaMnO3 (LMO) buffered disorderd-LaAlO3/SrTiO3 (d-LAO/LMO/STO) heterointerface, provides new opportunities for electronics as well as quantum physics. Herein, we studied the depe
We study the effects of bismuth doping on the crystal structure and phase transitions in single crystals of the perovskite semiconductor methylammonium lead tribromide, MAPbBr3. By measuring temperature-dependent specific heat capacity (Cp) we find t
We examine the response of a soft ferromagnetic film to an in-plane applied magnetic field. Our theory, based on asymptotic analysis of the micromagnetic energy in the thin-film limit, proceeds in two steps: first we determine the magnetic charge den