ﻻ يوجد ملخص باللغة العربية
Charged-lepton flavour-violating (cLFV) processes offer deep probes for new physics with discovery sensitivity to a broad array of new physics models - SUSY, Higgs Doublets, Extra Dimensions, and, particularly, models explaining the neutrino mass hierarchy and the matter-antimatter asymmetry of the universe via leptogenesis. The most sensitive probes of cLFV utilize high-intensity muon beams to search for $mu rightarrow e$ transitions. We summarize the status of muon-cLFV experiments currently under construction at PSI, Fermilab, and J-PARC. These experiments offer sensitivity to effective new physics mass scales approaching O($10^4$) TeV/c$^2$. Further improvements are possible and next-generation experiments, using upgraded accelerator facilities at PSI, Fermilab, and J-PARC, could begin data taking within the next decade. In the case of discoveries at the LHC, they could distinguish among alternative models; even in the absence of direct discoveries, they could establish new physics. These experiments both complement and extend the searches at the LHC.
The search for charged lepton flavour violation (CLFV) has enormous discovery potential in probing new physics Beyond the Standard Model (BSM). Among the muonic CLFV processes, $mu to e$ conversion is one of the most important processes, having sever
The Heavy Flavor Averaging Group provides with this document input to the European Strategy for Particle Physics. Research in heavy-flavor physics is an essential component of the particle-physics program, both within and beyond the Standard Model. T
A group of Early-Career Researchers (ECRs) has been given a mandate from the European Committee for Future Accelerators (ECFA) to debate the topics of the current European Strategy Update (ESU) for Particle Physics and to summarise the outcome in a b
This document was prepared as part of the briefing material for the Workshop of the CERN Council Strategy Group, held in DESY Zeuthen from 2nd to 6th May 2006. It gives an overview of the physics issues and of the technological challenges that will s
In planning for the Phase II upgrades of CMS and ATLAS major considerations are: 1)being able to deal with degradation of tracking and calorimetry up to the radiation doses to be expected with an integrated luminosity of 3000 $fb^{-1}$ and 2)maintain