ترغب بنشر مسار تعليمي؟ اضغط هنا

Minkowski identities for hypersurfaces in constant sectional curvature manifolds

137   0   0.0 ( 0 )
 نشر من قبل Rui Albuquerque
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف R. Albuquerque




اسأل ChatGPT حول البحث

We give a new proof of the generalized Minkowski identities relating the higher degree mean curvatures of orientable closed hypersurfaces immersed in a given constant sectional curvature manifold. Our methods rely on a fundamental differential system of Riemannian geometry introduced by the author. We develop the notion of position vector field, which lies at the core of the Minkowski identities.

قيم البحث

اقرأ أيضاً

In this article, we study hypersurfaces $Sigmasubset mathbb{R}^{n+1}$ with constant weighted mean curvature. Recently, Wei-Peng proved a rigidity theorem for CWMC hypersurfaces that generalizes Le-Sesum classification theorem for self-shrinker. More specifically, they showed that a complete CWMC hypersurface with polynomial volume growth, bounded norm of the second fundamental form and that satisfies $|A|^2H(H-lambda)leq H^2/2$ must either be a hyperplane or a generalized cylinder. We generalize this result by removing the bound condition on the norm of the second fundamental form. Moreover, we prove that under some conditions if the reverse inequality holds then the hypersurface must either be a hyperplane or a generalized cylinder. As an application of one of the results proved in this paper, we will obtain another version of the classification theorem obtained by the authors of this article, that is, we show that under some conditions, a complete CWMC hypersurface with $Hgeq 0$ must either be a hyperplane or a generalized cylinder.
141 - Xiaodong Cao , Hung Tran 2016
In this paper, we obtain classification of four-dimensional Einstein manifolds with positive Ricci curvature and pinched sectional curvature. In particular, the first result concerns with an upper bound of sectional curvature, improving a theorem of E. Costa. The second is a generalization of D. Yangs result assuming an upper bound on the difference between sectional curvatures.
We show that a closed almost Kahler 4-manifold of globally constant holomorphic sectional curvature $kgeq 0$ with respect to the canonical Hermitian connection is automatically Kahler. The same result holds for $k<0$ if we require in addition that th e Ricci curvature is J-invariant. The proofs are based on the observation that such manifolds are self-dual, so that Chern-Weil theory implies useful integral formulas, which are then combined with results from Seiberg--Witten theory.
We obtain a reduction of the vectorial Ribaucour transformation that preserves the class of submanifolds of constant sectional curvature of space forms, which we call the $L$-transformation. It allows to construct a family of such submanifolds starti ng with a given one and a vector-valued solution of a system of linear partial differential equations. We prove a decomposition theorem for the $L$-transformation, which is a far-reaching generalization of the classical permutability formula for the Ribaucour transformation of surfaces of constant curvature in Euclidean three space. As a consequence, we derive a Bianchi-cube theorem, which allows to produce, from $k$ initial scalar $L$-transforms of a given submanifold of constant curvature, a whole $k$-dimensional cube all of whose remaining $2^k-(k+1)$ vertices are submanifolds with the same constant sectional curvature given by explicit algebraic formulae. We also obtain further reductions, as well as corresponding decomposition and Bianchi-cube theorems, for the classes of $n$-dimensional flat Lagrangian submanifolds of $mathbb{C}^n$ and $n$-dimensional Lagrangian submanifolds with constant curvature $c$ of the complex projective space $mathbb Cmathbb P^n(4c)$ or the complex hyperbolic space $mathbb Cmathbb H^n(4c)$ of complex dimension $n$ and constant holomorphic curvature~4c.
In this paper, we study constant weighted mean curvature hypersurfaces in shrinking Ricci solitons. First, we show that a constant weighted mean curvature hypersurface with finite weighted volume cannot lie in a region determined by a special level s et of the potential function, unless it is the level set. Next, we show that a compact constant weighted mean curvature hypersurface with a certain upper bound or lower bound on the mean curvature is a level set of the potential function. We can apply both results to the cylinder shrinking Ricci soliton ambient space. Finally, we show that a constant weighted mean curvature hypersurface in the Gaussian shrinking Ricci soliton (not necessarily properly immersed) with a certain assumption on the integral of the second fundamental form must be a generalized cylinder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا