ترغب بنشر مسار تعليمي؟ اضغط هنا

Four-Gauge-Particle Scattering Amplitudes and Polyakov String Path Integral in the proper-time gauge

110   0   0.0 ( 0 )
 نشر من قبل Taejin Lee
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Taejin Lee




اسأل ChatGPT حول البحث

We evaluate four-gauge-particle tree level scattering amplitudes using the Polyakov string path integral in the proper-time gauge, where the string path integral can be cast into the Feynman-Schwinger proper-time representation. We compare the resultant scattering amplitudes, which include $ap$-corrections, with the conventional ones that may be obtained by substituting local vertex operators for the external string states. In the zero-slope limit, both amplitudes are reduced to the four-gauge-particle scattering amplitude of non-Abelian Yang-Mills gauge theory. However, when the string corrections become relevant with finite $ap$, the scattering amplitude in the proper-time gauge differs from the conventional one: The Polyakov string path integral in the proper-time gauge, equivalent to the deformed cubic string field theory, systematically provides the alpha prime corrections. In addition, we find that the scattering amplitude in the proper-time gauge contains tachyon poles in a manner consistent with three-particle-scattering amplitudes. The scattering amplitudes evaluated using the Polyakov string path integral in the proper-time gauge may be more suitable than conventional ones for exploring string corrections to the quantum field theories and high energy behaviors of open string.



قيم البحث

اقرأ أيضاً

64 - Taejin Lee 2018
We evaluate the four-closed-string scattering amplitude, using the Polyakov string path integral in the proper-time gauge. By identifying the Fock space representation of the four-closed-string-vertex, we obtain a field theoretic expression of the cl osed string scattering amplitudes. In the zero-slope limit, the four-closed-string scattering amplitude reduces to the four-graviton-scattering amplitude of Einsteins gravity. However, at a finite slope, the four-graviton scattering amplitude in the proper-time gauge differs not only from that of Einstein gravity, but also significantly differs from the conventional one obtained by using the vertex operator technique in string theory. This discrepancy is mainly due to the presence of closed string tachyon poles in the four-graviton-scattering amplitude, which are missing in previous works. Because the tachyon poles in the scattering amplitude considerably alter the short distance behavior of gravitational interaction, they may be important in understanding problems associated with the perturbative theory of quantum gravity and the dark matter within the framework of string theory.
126 - Taejin Lee 2017
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the P olyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.
We consider pure Yang Mills theory on the four torus. A set of non-Abelian transition functions is presented which encompass all instanton sectors. It is argued that these transition functions are a convenient starting point for gauge fixing. In part icular, we give an extended Abelian projection with respect to the Polyakov loop, where $A_0$ is independent of time and in the Cartan subalgebra. In the non-perturbative sectors such gauge fixings are necessarily singular. These singularities can be restricted to Dirac strings joining monopole and anti-monopole like ``defects.
We study the multiloop amplitudes of the light-cone gauge closed bosonic string field theory for $d eq 26$. We show that the amplitudes can be recast into a BRST invariant form by adding a nonstandard worldsheet theory for the longitudinal variables $X^{pm}$ and the reparametrization ghost system. The results obtained in this paper for bosonic strings provide a first step towards the examination whether the dimensional regularization works for the multiloop amplitudes of the light-cone gauge superstring field theory.
Feynman amplitudes of light-cone gauge superstring field theory are ill-defined because of various divergences. In a previous paper, one of the authors showed that taking the worldsheet theory to be the one in a linear dilaton background $Phi=-iQX^{1 }$ with Feynman $ivarepsilon$ $(varepsilon>0)$ and $Q^{2}>10$ yields finite amplitudes. In this paper, we apply this worldsheet theory to dimensional regularization of the light-cone gauge NSR superstring field theory. We concentrate on the amplitudes for even spin structure with external lines in the (NS,NS) sector. We show that the multiloop amplitudes are indeed regularized in our scheme and that they coincide with the results in the first-quantized formalism through the analytic continuation $Qto0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا