ﻻ يوجد ملخص باللغة العربية
We evaluate four-gauge-particle tree level scattering amplitudes using the Polyakov string path integral in the proper-time gauge, where the string path integral can be cast into the Feynman-Schwinger proper-time representation. We compare the resultant scattering amplitudes, which include $ap$-corrections, with the conventional ones that may be obtained by substituting local vertex operators for the external string states. In the zero-slope limit, both amplitudes are reduced to the four-gauge-particle scattering amplitude of non-Abelian Yang-Mills gauge theory. However, when the string corrections become relevant with finite $ap$, the scattering amplitude in the proper-time gauge differs from the conventional one: The Polyakov string path integral in the proper-time gauge, equivalent to the deformed cubic string field theory, systematically provides the alpha prime corrections. In addition, we find that the scattering amplitude in the proper-time gauge contains tachyon poles in a manner consistent with three-particle-scattering amplitudes. The scattering amplitudes evaluated using the Polyakov string path integral in the proper-time gauge may be more suitable than conventional ones for exploring string corrections to the quantum field theories and high energy behaviors of open string.
We evaluate the four-closed-string scattering amplitude, using the Polyakov string path integral in the proper-time gauge. By identifying the Fock space representation of the four-closed-string-vertex, we obtain a field theoretic expression of the cl
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the P
We consider pure Yang Mills theory on the four torus. A set of non-Abelian transition functions is presented which encompass all instanton sectors. It is argued that these transition functions are a convenient starting point for gauge fixing. In part
We study the multiloop amplitudes of the light-cone gauge closed bosonic string field theory for $d eq 26$. We show that the amplitudes can be recast into a BRST invariant form by adding a nonstandard worldsheet theory for the longitudinal variables
Feynman amplitudes of light-cone gauge superstring field theory are ill-defined because of various divergences. In a previous paper, one of the authors showed that taking the worldsheet theory to be the one in a linear dilaton background $Phi=-iQX^{1