ﻻ يوجد ملخص باللغة العربية
Semi-Supervised Learning (SSL) has been proved to be an effective way to leverage both labeled and unlabeled data at the same time. Recent semi-supervised approaches focus on deep neural networks and have achieved promising results on several benchmarks: CIFAR10, CIFAR100 and SVHN. However, most of their experiments are based on models trained from scratch instead of pre-trained models. On the other hand, transfer learning has demonstrated its value when the target domain has limited labeled data. Here comes the intuitive question: is it possible to incorporate SSL when fine-tuning a pre-trained model? We comprehensively study how SSL methods starting from pretrained models perform under varying conditions, including training strategies, architecture choice and datasets. From this study, we obtain several interesting and useful observations. While practitioners have had an intuitive understanding of these observations, we do a comprehensive emperical analysis and demonstrate that: (1) the gains from SSL techniques over a fully-supervised baseline are smaller when trained from a pre-trained model than when trained from random initialization, (2) when the domain of the source data used to train the pre-trained model differs significantly from the domain of the target task, the gains from SSL are significantly higher and (3) some SSL methods are able to advance fully-supervised baselines (like Pseudo-Label). We hope our studies can deepen the understanding of SSL research and facilitate the process of developing more effective SSL methods to utilize pre-trained models. Code is now available at github.
What is the best way to learn a universal face representation? Recent work on Deep Learning in the area of face analysis has focused on supervised learning for specific tasks of interest (e.g. face recognition, facial landmark localization etc.) but
Recent semi-supervised learning methods use pseudo supervision as core idea, especially self-training methods that generate pseudo labels. However, pseudo labels are unreliable. Self-training methods usually rely on single model prediction confidence
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learni
We investigate the generalization of semi-supervised learning (SSL) to diverse pixel-wise tasks. Although SSL methods have achieved impressive results in image classification, the performances of applying them to pixel-wise tasks are unsatisfactory d
In real-world applications, it is often expensive and time-consuming to obtain labeled examples. In such cases, knowledge transfer from related domains, where labels are abundant, could greatly reduce the need for extensive labeling efforts. In this