ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice vibrations and dynamic disorder in two-dimensional hybrid lead-halide perovskites

99   0   0.0 ( 0 )
 نشر من قبل Carlos Silva
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of non-resonant Raman spectroscopy and density functional theory calculations, we measure and assign the vibrational spectrum of two distinct two-dimensional lead-iodide perovskite derivatives. These two samples are selected in order to probe the effects of the organic cation on lattice dynamics. One templating cation is composed of a phenyl-substituted ammonium derivative, while the other contains a linear alkyl group. We find that modes that directly involve the organic cation are more prevalent in the phenyl-substituted derivative. Comparison of the temperature dependence of the Raman spectra reveals differences in the nature of dynamic disorder, with a strong dependence on the molecular nature of the organic moiety.

قيم البحث

اقرأ أيضاً

With strongly bound and stable excitons at room temperature, single-layer, two-dimensional organic-inorganic hybrid perovskites are viable semiconductors for light-emitting quantum optoelectronics applications. In such a technological context, it is imperative to comprehensively explore all the factors --- chemical, electronic and structural --- that govern strong multi-exciton correlations. Here, by means of two-dimensional coherent spectroscopy, we examine excitonic many-body effects in pure, single-layer (PEA)$_2$PbI$_4$ (PEA = phenylethylammonium). We determine the binding energy of biexcitons --- correlated two-electron, two-hole quasiparticles --- to be $44 pm 5$,meV at room temperature. The extraordinarily high values are similar to those reported in other strongly excitonic two-dimensional materials such as transition-metal dichalchogenides. Importantly, we show that this binding energy increases by $sim25$% upon cooling to 5,K. Our work highlights the importance of multi-exciton correlations in this class of technologically promising, solution-processable materials, in spite of the strong effects of lattice fluctuations and dynamic disorder.
While polarons --- charges bound to a lattice deformation induced by electron-phonon coupling --- are primary photoexcitations at room temperature in bulk metal-halide hybrid organic-inorganic perovskites (HOIP), excitons --- Coulomb-bound el-ectron- hole pairs --- are the stable quasi-particles in their two-dimensional (2D) analogues. Here we address the fundamental question: are polaronic effects consequential for excitons in 2D-HIOPs? Based on our recent work, we argue that polaronic effects are manifested intrinsically in the exciton spectral structure, which is comprised of multiple non-degenerate resonances with constant inter-peak energy spacing. We highlight our own measurements of population and dephasing dynamics that point to the apparently deterministic role of polaronic effects in excitonic properties. We contend that an interplay of long-range and short-range exciton-lattice couplings give rise to exciton polarons, a character that fundamentally establishes their effective mass and radius, and consequently, their quantum dynamics. Finally, we highlight opportunities for the community to develop the rigorous description of exciton polarons in 2D-HIOPs to advance their fundamental understanding as model systems for condensed-phase materials in which lattice-mediated correlations are fundamental to their physical properties.
Hybrid organic-inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dyna mic structural complexity in a prototypical two-dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impulsive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency ($lesssim 50$,cm$^{-1}$) optical phonons involving motion in the lead-iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight on the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials.
Excitation localization involving dynamic nanoscale distortions is a central aspect of photocatalysis, quantum materials and molecular optoelectronics. Experimental characterization of such distortions requires techniques sensitive to the formation o f point-defect-like local structural rearrangements in real time. Here, we visualize excitation-induced strain fields in a prototypical member of the lead halide perovskites via femtosecond resolution diffuse x-ray scattering measurements. This enables momentum-resolved phonon spectroscopy of the locally-distorted structure and reveals radially-expanding nanometer-scale elastic strain fields associated with the formation and relaxation of polarons in photoexcited perovskites. Quantitative estimates of the magnitude and the shape of this polaronic distortion are obtained, providing direct insights into the debated dynamic structural distortions in these materials. Optical pump-probe reflection spectroscopy corroborates these results and shows how these large polaronic distortions transiently modify the carrier effective mass, providing a unified picture of the coupled structural and electronic dynamics that underlie the unique optoelectronic functionality of the hybrid perovskites.
Much recent attention has been devoted towards unravelling the microscopic optoelectronic properties of hybrid organic-inorganic perovskites (HOP). Here we investigate by coherent inelastic neutron scattering spectroscopy and Brillouin light scatteri ng, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr$_3$, FAPbBr$_3$, MAPbI$_3$ and $alpha$-FAPbI$_3$ (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear modulus C$_{44}$. Further, a tendency towards an incipient ferroelastic transition is observed in FAPbBr$_3$. We observe a systematic lower sound group velocity in the technologically important iodide-based compounds compared to the bromide-based ones. The findings suggest that low thermal conductivity and hot phonon bottleneck phenomena are expected to be enhanced by low elastic stiffness, particularly in the case of the ultrasoft $alpha$-FAPbI$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا