ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Automating Precision Studies of Clone Detectors

108   0   0.0 ( 0 )
 نشر من قبل Vaibhav Saini
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Current research in clone detection suffers from poor ecosystems for evaluating precision of clone detection tools. Corpora of labeled clones are scarce and incomplete, making evaluation labor intensive and idiosyncratic, and limiting inter tool comparison. Precision-assessment tools are simply lacking. We present a semi-automated approach to facilitate precision studies of clone detection tools. The approach merges automatic mechanisms of clone classification with manual validation of clone pairs. We demonstrate that the proposed automatic approach has a very high precision and it significantly reduces the number of clone pairs that need human validation during precision experiments. Moreover, we aggregate the individual effort of multiple teams into a single evolving dataset of labeled clone pairs, creating an important asset for software clone research.



قيم البحث

اقرأ أيضاً

Code reviews are popular in both industrial and open source projects. The benefits of code reviews are widely recognized and include better code quality and lower likelihood of introducing bugs. However, since code review is a manual activity it come s at the cost of spending developers time on reviewing their teammates code. Our goal is to make the first step towards partially automating the code review process, thus, possibly reducing the manual costs associated with it. We focus on both the contributor and the reviewer sides of the process, by training two different Deep Learning architectures. The first one learns code changes performed by developers during real code review activities, thus providing the contributor with a revised version of her code implementing code transformations usually recommended during code review before the code is even submitted for review. The second one automatically provides the reviewer commenting on a submitted code with the revised code implementing her comments expressed in natural language. The empirical evaluation of the two models shows that, on the contributor side, the trained model succeeds in replicating the code transformations applied during code reviews in up to 16% of cases. On the reviewer side, the model can correctly implement a comment provided in natural language in up to 31% of cases. While these results are encouraging, more research is needed to make these models usable by developers.
PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, will use two segmented detectors positioned 7-20 m from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory to measure the U-235 antineutrino spectrum and perform a search for short-baseline oscillations as a signature of eV-scale sterile neutrinos. PROSPECT has developed Li-6 loaded liquid scintillator detectors for efficient identification of reactor antineutrinos and has measured reactor and cosmogenic backgrounds in the HFIR reactor building. Multiple test detectors have been built, operated, and characterized at HFIR and elsewhere to understand the optical performance of the scintillator and pulse-shape discrimination capabilities for enhanced background rejection. The results from this R&D effort are discussed, in the context of the design and physics potential of PROSPECT.
148 - Zhipeng Gao , Xin Xia , David Lo 2021
TODO comments are very widely used by software developers to describe their pending tasks during software development. However, after performing the task developers sometimes neglect or simply forget to remove the TODO comment, resulting in obsolete TODO comments. These obsolete TODO comments can confuse development teams and may cause the introduction of bugs in the future, decreasing the softwares quality and maintainability. In this work, we propose a novel model, named TDCleaner (TODO comment Cleaner), to identify obsolete TODO comments in software projects. TDCleaner can assist developers in just-in-time checking of TODO comments status and avoid leaving obsolete TODO comments. Our approach has two main stages: offline learning and online prediction. During offline learning, we first automatically establish <code_change, todo_comment, commit_msg> training samples and leverage three neural encoders to capture the semantic features of TODO comment, code change and commit message respectively. TDCleaner then automatically learns the correlations and interactions between different encoders to estimate the final status of the TODO comment. For online prediction, we check a TODO comments status by leveraging the offline trained model to judge the TODO comments likelihood of being obsolete. We built our dataset by collecting TODO comments from the top-10,000 Python and Java Github repositories and evaluated TDCleaner on them. Extensive experimental results show the promising performance of our model over a set of benchmarks. We also performed an in-the-wild evaluation with real-world software projects, we reported 18 obsolete TODO comments identified by TDCleaner to Github developers and 9 of them have already been confirmed and removed by the developers, demonstrating the practical usage of our approach.
Despite a decade of active research, there is a marked lack in clone detectors that scale to very large repositories of source code, in particular for detecting near-miss clones where significant editing activities may take place in the cloned code. We present SourcererCC, a token-based clone detector that targets three clone types, and exploits an index to achieve scalability to large inter-project repositories using a standard workstation. SourcererCC uses an optimized inverted-index to quickly query the potential clones of a given code block. Filtering heuristics based on token ordering are used to significantly reduce the size of the index, the number of code-block comparisons needed to detect the clones, as well as the number of required token-comparisons needed to judge a potential clone. We evaluate the scalability, execution time, recall and precision of SourcererCC, and compare it to four publicly available and state-of-the-art tools. To measure recall, we use two recent benchmarks, (1) a large benchmark of real clones, BigCloneBench, and (2) a Mutation/Injection-based framework of thousands of fine-grained artificial clones. We find SourcererCC has both high recall and precision, and is able to scale to a large inter-project repository (250MLOC) using a standard workstation.
State of the art deep learning models have made steady progress in the fields of computer vision and natural language processing, at the expense of growing model sizes and computational complexity. Deploying these models on low power and mobile devic es poses a challenge due to their limited compute capabilities and strict energy budgets. One solution that has generated significant research interest is deploying highly quantized models that operate on low precision inputs and weights less than eight bits, trading off accuracy for performance. These models have a significantly reduced memory footprint (up to 32x reduction) and can replace multiply-accumulates with bitwise operations during compute intensive convolution and fully connected layers. Most deep learning frameworks rely on highly engineered linear algebra libraries such as ATLAS or Intels MKL to implement efficient deep learning operators. To date, none of the popular deep learning directly support low precision operators, partly due to a lack of optimized low precision libraries. In this paper we introduce a work flow to quickly generate high performance low precision deep learning operators for arbitrary precision that target multiple CPU architectures and include optimizations such as memory tiling and vectorization. We present an extensive case study on low power ARM Cortex-A53 CPU, and show how we can generate 1-bit, 2-bit convolutions with speedups up to 16x over an optimized 16-bit integer baseline and 2.3x better than handwritten implementations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا