ترغب بنشر مسار تعليمي؟ اضغط هنا

A Review of Recent Observations of Galactic Winds Driven by Star Formation

54   0   0.0 ( 0 )
 نشر من قبل David S. N. Rupke
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David S. N. Rupke




اسأل ChatGPT حول البحث

Galaxy-scale outflows of gas, or galactic winds (GWs), driven by energy from star formation are a pivotal mechanism for regulation of star formation in the current model of galaxy evolution. Observations of this phenomenon have proliferated through the wide application of old techniques on large samples of galaxies, the development of new methods, and advances in telescopes and instrumentation. I review the diverse portfolio of direct observations of stellar GWs since 2010. Maturing measurements of the ionized and neutral gas properties of nearby winds have been joined by exciting new probes of molecular gas and dust. Low-$z$ techniques have been newly applied in large numbers at high $z$. The explosion of optical and near-infrared 3D imaging spectroscopy has revealed the complex, multiphase structure of nearby GWs. These observations point to stellar GWs being a common feature of rapidly star-forming galaxies throughout at least the second half of cosmic history, and suggest that scaling relationships between outflow and galaxy properties persist over this period. The simple model of a modest-velocity, biconical flow of multiphase gas and dust perpendicular to galaxy disks continues to be a robust descriptor of these flows.

قيم البحث

اقرأ أيضاً

We study the galactic wind in the edge-on spiral galaxy UGC 10043 with the combination of the CALIFA integral field spectroscopy data, scanning Fabry-Perot interferometry (FPI), and multiband photometry. We detect ionized gas in the extraplanar regio ns reaching a relatively high distance, up to ~ 4 kpc above the galactic disk. The ionized gas line ratios ([N ii]/Ha, [S ii]/Ha and [O i]/Ha) present an enhancement along the semi minor axis, in contrast with the values found at the disk, where they are compatible with ionization due to H ii-regions. These differences, together with the biconic symmetry of the extra-planar ionized structure, makes UGC 10043 a clear candidate for a galaxy with gas outflows ionizated by shocks. From the comparison of shock models with the observed line ratios, and the kinematics observed from the FPI data, we constrain the physical properties of the observed outflow. The data are compatible with a velocity increase of the gas along the extraplanar distances up to < 400 km/s and the preshock density decreasing in the same direction. We also observe a discrepancy in the SFR estimated based on Ha (0.36 Msun/yr ) and the estimated with the CIGALE code, being the latter 5 times larger. Nevertheless, this SFR is still not enough to drive the observed galactic wind if we do not take into account the filling factor. We stress that the combination of the three techniques of observation with models is a powerful tool to explore galactic winds in the Local Universe.
We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610~MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation and the high luminosity X-ray binary populations in t he major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe-K$alpha$ emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infra-red and ultra-violet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.
Using synthetic absorption lines generated from 3D hydro-dynamical simulations we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations until the scalin g relations flatten abruptly at a point set by the mass loading of the starburst. Below this point the scaling relation depends on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas is four to five times lower than the average velocity of the hottest gas, with the difference in velocity between the neutral and ionized gas increasing with gas ionization. Thus, absorption lines of neutral or low ionized gas will underestimate the outflow velocity of hot gas, severely underestimating outflow energetics.
We use analytic calculations and time-dependent spherically-symmetric simulations to study the properties of isothermal galactic winds driven by cosmic-rays (CRs) streaming at the Alfven velocity. The simulations produce time-dependent flows permeate d by strong shocks; we identify a new linear instability of sound waves that sources these shocks. The shocks substantially modify the wind dynamics, invalidating previous steady state models: the CR pressure $p_c$ has a staircase-like structure with $dp_c/dr simeq 0$ in most of the volume, and the time-averaged CR energetics are in many cases better approximated by $p_c propto rho^{1/2}$, rather than the canonical $p_c propto rho^{2/3}$. Accounting for this change in CR energetics, we analytically derive new expressions for the mass-loss rate, momentum flux, wind speed, and wind kinetic power in galactic winds driven by CR streaming. We show that streaming CRs are ineffective at directly driving cold gas out of galaxies, though CR-driven winds in hotter ISM phases may entrain cool gas. For the same physical conditions, diffusive CR transport (Paper I) yields mass-loss rates that are a few-100 times larger than streaming transport, and asymptotic wind powers that are a factor of $simeq 4$ larger. We discuss the implications of our results for galactic wind theory and observations; strong shocks driven by CR-streaming-induced instabilities produce gas with a wide range of densities and temperatures, consistent with the multiphase nature of observed winds. We also quantify the applicability of the isothermal gas approximation for modeling streaming CRs and highlight the need for calculations with more realistic thermodynamics.
94 - C. M. Booth 2013
We present results from high-resolution hydrodynamic simulations of isolated SMC- and Milky Way-sized galaxies that include a model for feedback from galactic cosmic rays (CRs). We find that CRs are naturally able to drive winds with mass loading fac tors of up to ~10 in dwarf systems. The scaling of the mass loading factor with circular velocity between the two simulated systems is consistent with propto v_c^{1-2} required to reproduce the faint end of the galaxy luminosity function. In addition, simulations with CR feedback reproduce both the normalization and the slope of the observed trend of wind velocity with galaxy circular velocity. We find that winds in simulations with CR feedback exhibit qualitatively different properties compared to SN driven winds, where most of the acceleration happens violently in situ near star forming sites. In contrast, the CR-driven winds are accelerated gently by the large-scale pressure gradient established by CRs diffusing from the star-forming galaxy disk out into the halo. The CR-driven winds also exhibit much cooler temperatures and, in the SMC-sized system, warm (T~10^4 K) gas dominates the outflow. The prevalence of warm gas in such outflows may provide a clue as to the origin of ubiquitous warm gas in the gaseous halos of galaxies detected via absorption lines in quasar spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا