ﻻ يوجد ملخص باللغة العربية
We show that the non-integer effective number of neutrinos $N^{mathrm{eff}}_ u$ can be understood as an effect of lepton $L$ asymmetry in the early Universe carried by the Dirac neutrino cosmic background. We show that $N_ u^{mathrm{eff}}=3.36pm0.34$ (CMB only) and $N_ u^{mathrm{eff}}= 3.62pm0.25$ (CMB and $H_0$) require a ratio between baryon number $B$ and lepton number to be $1.16 times 10^{-9}leqslant B/|L|leqslant 1.51 times 10^{-9}$. These values are close to the baryon-to-photon ratio $0.57times 10^{-9}leqslant B/N_gamma leqslant 0.67times10^{-9}$. Thus instead of the usual $|L|ll N_gamma$ and $Bsimeq |L|$, we propose to use $0.4 leqslant |L|/N_gammaleqslant 0.52$ and $Bll|L|$ as another natural choice, which resolves the tension between Planck-CMB and $H_0$ and leads to a non-integer value of $N_ u^{mathrm{eff}}>3$.
We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both high-scale as well as
We describe a unique gravitational wave signature for a class of models with a vast hierarchy between the symmetry breaking scales. The unusual shape of the signal is a result of the overlapping contributions to the stochastic gravitational wave back
We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from t
We show that if global lepton number symmetry is spontaneously broken in a post inflation epoch, then it can lead to the formation of cosmological domain walls. This happens in the well-known Majoron paradigm for neutrino mass generation. We propose
We argue that a cosmic neutrino background that carries non-zero lepton charge develops gravitational instabilities. Fundamentally, these instabilities are related to the mixed gravity-lepton number anomaly. We have explicitly computed the gravitatio