ﻻ يوجد ملخص باللغة العربية
We describe the methods used to construct the aligned-spin template bank of gravitational waveforms used by the GstLAL-based inspiral pipeline to analyze data from the second observing run of Advanced LIGO and the first observing run of advanced Virgo. The bank expands upon the parameter space covered during the first observing run, including coverage for merging compact binary systems with total mass between 2 $mathrm{M}_{odot}$ and 400 $mathrm{M}_{odot}$ and mass ratios between 1 and 97.988. Thus the systems targeted include merging neutron star-neutron star systems, neutron star-black hole binaries, and black hole-black hole binaries expanding into the intermediate-mass range. Component masses less than 2 $mathrm{M}_{odot}$ have allowed (anti-)aligned spins between $pm0.05$ while component masses greater than 2 $mathrm{M}_{odot}$ have allowed (anti-)aligned between $pm0.999$. The bank placement technique combines a stochastic method with a new grid-bank method to better isolate noisy templates, resulting in a total of 677,000 templates.
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary bl
The speed of gravitational waves for a single observation can be measured by the time delay among gravitational-wave detectors with Bayesian inference. Then multiple measurements can be combined to produce a more accurate result. From the near simult
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approxim
We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 9
Intermediate-mass black holes (IMBHs) span the approximate mass range $100$--$10^5,M_odot$, between black holes (BHs) formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic grav