ﻻ يوجد ملخص باللغة العربية
Huygens metasurfaces are electrically thin devices which allow arbitrary field transformations. Beam refraction is among the first demonstrations of realized metasurfaces. As previously shown for extreme-angle refraction, control over only the electric impedance and magnetic admittance of the Huygens metasurface proved insufficient to produce the desired reflectionless field transformation. To maintain zero reflections for wide refraction angles, magnetoelectric coupling between the electric and magnetic response of the metasurface, leading to bianisotropy, can be introduced. In this paper, we report the theory, design, and experimental characterization of a reflectionless bianisotropic metasurface for extreme-angle refraction of a normally incident plane wave towards 71.8$^circ$ at 20 GHz. The theory and design of three-layer asymmetric bianisotropic unit cells are discussed. The realized printed circuit board structure was tested via full-wave simulations as well as experimental characterization. To experimentally verify the prototype, two setups were used. A quasi-optical experiment was conducted to assess the specular reflections of the metasurface, while a far-field antenna measurement characterized its refraction nature. The measurements verify that the fabricated metasurface has negligible reflections and the majority of the scattered power is refracted to the desired Floquet mode. This provides an experimental demonstration of a reflectionless wide-angle refracting metasurface using a bianisotropic Huygens metasurface at microwave frequencies.
Metasurfaces are an enabling technology for complex wave manipulation functions, including in the terahertz frequency range, where they are expected to advance security, imaging, sensing, and communications technology. For operation in transmission,
In this paper, a novel concept of a leaky-wave antenna is proposed, based on the use of Huygens metasurfaces. It consists of a parallel-plate waveguide in which the top plate is replaced by a bianisotropic metasurface of the Omega type. It is shown t
Although a rigorous theoretical ground on metasurfaces has been established in the recent years on the basis of the equivalence principle, the majority of metasurfaces for converting a propagating wave into a surface wave are developed in accordance
Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snells law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matc
Metasurfaces provide the disruptive technology enabling miniaturization of complex cascades of optical elements on a plane. We leverage the benefits of such a surface to develop a planar integrated photonic beam collimator for on-chip optofluidic sen