ترغب بنشر مسار تعليمي؟ اضغط هنا

The generalized TAP free energy

73   0   0.0 ( 0 )
 نشر من قبل Dmitry Panchenko
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the mixed $p$-spin mean-field spin glass model with Ising spins and investigate its free energy in the spirit of the TAP approach, named after Thouless, Anderson, and Palmer. More precisely, we define and compute the generalized TAP correction, and establish the corresponding generalized TAP representation for the free energy. In connection with physicists replica theory, we introduce the notion of generalized TAP states, which are the maximizers of the generalized TAP free energy, and show that their order parameters match the order parameter of the ancestor states in the Parisi ansatz. We compute the critical point equations of the TAP free energy that generalize the classical TAP equations for pure states. Furthermore, we give an exact description of the region where the generalized TAP correction is replica symmetric, in which case it coincides with the classical TAP correction, and show that Plefkas condition is necessary for this to happen. In particular, our result shows that the generalized TAP correction is not always replica symmetric on the points corresponding to the Edwards-Anderson parameter.



قيم البحث

اقرأ أيضاً

In a recent paper [14], we developed the generalized TAP approach for mixed $p$-spin models with Ising spins at positive temperature. Here we extend these results in two directions. We find a simplified representation for the energy of the generalize d TAP states in terms of the Parisi measure of the model and, in particular, show that the energy of all states at a given distance from the origin is the same. Furthermore, we prove the analogues of the positive temperature results at zero temperature, which concern the ground-state energy and the organization of ground-state configurations in space.
We prove the Wigner-Dyson-Mehta conjecture at fixed energy in the bulk of the spectrum for generalized symmetric and Hermitian Wigner matrices. Previous results concerning the universality of random matrices either require an averaging in the energy parameter or they hold only for Hermitian matrices if the energy parameter is fixed. We develop a homogenization theory of the Dyson Brownian motion and show that microscopic universality follows from mesoscopic statistics.
103 - Benjamin Landon 2020
We investigate the fluctuations of the free energy of the $2$-spin spherical Sherrington-Kirkpatrick model at critical temperature $beta_c = 1$. When $beta = 1$ we find asymptotic Gaussian fluctuations with variance $frac{1}{6N^2} log(N)$, confirming in the spherical case a physics prediction for the SK model with Ising spins. We furthermore prove the existence of a critical window on the scale $beta = 1 +alpha sqrt{ log(N) } N^{-1/3}$. For any $alpha in mathbb{R}$ we show that the fluctuations are at most order $sqrt{ log(N) } / N$, in the sense of tightness. If $ alpha to infty$ at any rate as $N to infty$ then, properly normalized, the fluctuations converge to the Tracy-Widom$_1$ distribution. If $ alpha to 0$ at any rate as $N to infty$ or $ alpha <0$ is fixed, the fluctuations are asymptotically Gaussian as in the $alpha=0$ case. In determining the fluctuations, we apply a recent result of Lambert and Paquette on the behavior of the Gaussian-$beta$-ensemble at the spectral edge.
We study asymptotics of the free energy for the directed polymer in random environment. The polymer is allowed to make unbounded jumps and the environment is given by Bernoulli variables. We first establish the existence and continuity of the free en ergy including the negative infinity value of the coupling constant $beta$. Our proof of existence at $beta=-infty$ differs from existing ones in that it avoids the direct use of subadditivity. Secondly, we identify the asymptotics of the free energy at $beta=-infty$ in the limit of the success probability of the Bernoulli variables tending to one. It is described by using the so-called time constant of a certain directed first passage percolation. Our proof relies on a certain continuity property of the time constant, which is of independent interest.
The Rohde--Schramm theorem states that Schramm--Loewner Evolution with parameter $kappa$ (or SLE$_kappa$ for short) exists as a random curve, almost surely, if $kappa eq 8$. Here we give a new and concise proof of the result, based on the Liouville quantum gravity coupling (or reverse coupling) with a Gaussian free field. This transforms the problem of estimating the derivative of the Loewner flow into estimating certain correlated Gaussian free fields. While the correlation between these fields is not easy to understand, a surprisingly simple argument allows us to recover a derivative exponent first obtained by Rohde and Schramm, subsequently shown to be optimal by Lawler and Viklund, which then implies the Rohde--Schramm theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا