ﻻ يوجد ملخص باللغة العربية
We profile the impact of computation and inter-processor communication on the energy consumption and on the scaling of cortical simulations approaching the real-time regime on distributed computing platforms. Also, the speed and energy consumption of processor architectures typical of standard HPC and embedded platforms are compared. We demonstrate the importance of the design of low-latency interconnect for speed and energy consumption. The cost of cortical simulations is quantified using the Joule per synaptic event metric on both architectures. Reaching efficient real-time on large scale cortical simulations is of increasing relevance for both future bio-inspired artificial intelligence applications and for understanding the cognitive functions of the brain, a scientific quest that will require to embed large scale simulations into highly complex virtual or real worlds. This work stands at the crossroads between the WaveScalES experiment in the Human Brain Project (HBP), which includes the objective of large scale thalamo-cortical simulations of brain states and their transitions, and the ExaNeSt and EuroExa projects, that investigate the design of an ARM-based, low-power High Performance Computing (HPC) architecture with a dedicated interconnect scalable to million of cores; simulation of deep sleep Slow Wave Activity (SWA) and Asynchronous aWake (AW) regimes expressed by thalamo-cortical models are among their benchmarks.
Efficient brain simulation is a scientific grand challenge, a parallel/distributed coding challenge and a source of requirements and suggestions for future computing architectures. Indeed, the human brain includes about 10^15 synapses and 10^11 neuro
We measured the impact of long-range exponentially decaying intra-areal lateral connectivity on the scaling and memory occupation of a distributed spiking neural network simulator compared to that of short-range Gaussian decays. While previous studie
Combinatorial algorithms such as those that arise in graph analysis, modeling of discrete systems, bioinformatics, and chemistry, are often hard to parallelize. The Combinatorial BLAS library implements key computational primitives for rapid developm
The design space of networked embedded systems is very large, posing challenges to the optimisation of such platforms when it comes to support applications with real-time guarantees. Recent research has shown that a number of inter-related optimisati
Exploratory data analysis tools must respond quickly to a users questions, so that the answer to one question (e.g. a visualized histogram or fit) can influence the next. In some SQL-based query systems used in industry, even very large (petabyte) da