ﻻ يوجد ملخص باللغة العربية
The classical notions of structural controllability and structural observability are receiving increasing attention in Network Science, since they provide a mathematical basis to answer how the network structure of a dynamic system affects its controllability and observability properties. However, these two notions are formulated assuming systems with linear dynamics, which significantly limit their applicability. To overcome this limitation, here we introduce and fully characterize the notions structural accessibility and structural observability for systems with nonlinear dynamics. We show how nonlinearities make easier the problem of controlling and observing networked systems, reducing the number of variables that are necessary to directly control and directly measure. Our results contribute to understanding better the role that the network structure and nonlinearities play in our ability to control and observe complex dynamic systems.
In many large systems, such as those encountered in biology or economics, the dynamics are nonlinear and are only known very coarsely. It is often the case, however, that the signs (excitation or inhibition) of individual interactions are known. This
In this paper, nonlinear model reduction for power systems is performed by the balancing of empirical controllability and observability covariances that are calculated around the operating region. Unlike existing model reduction methods, the external
In this paper, we consider the state controllability of networked systems, where the network topology is directed and weighted and the nodes are higher-dimensional linear time-invariant (LTI) dynamical systems. We investigate how the network topology
We identify a new observability concept, called relative observability, in supervisory control of discrete-event systems under partial observation. A fixed, ambient language is given, relative to which observability is tested. Relative observability
This paper considers optimal attack attention allocation on remote state estimation in multi-systems. Suppose there are $mathtt{M}$ independent systems, each of which has a remote sensor monitoring the system and sending its local estimates to a fusi