ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal control for multi-parameter quantum estimation with time-dependent Hamiltonians

145   0   0.0 ( 0 )
 نشر من قبل Dong Xie
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate simultaneous estimation of multi-parameter quantum estimation with time-dependent Hamiltonians. We analytically obtain the maximal quantum Fisher information matrix for two-parameter in time-dependent three-level systems. The optimal coherent control scheme is proposed to increase the estimation precisions. In a example of a spin-1 particle in a uniformly rotating magnetic field, the optimal coherent Hamiltonians for different parameters can be chosen to be completely same. However, in general, the optimal coherent Hamiltonians for different parameters are incompatibility. In this situation, we suggest a variance method to obtain the optimal coherent Hamiltonian for estimating multiple parameters simultaneously, and obtain the optimal simultaneous estimation precision of two-parameter in a three-level Landau-Zener Hamiltonian.



قيم البحث

اقرأ أيضاً

Given a generic time-dependent many-body quantum state, we determine the associated parent Hamiltonian. This procedure may require, in general, interactions of any sort. Enforcing the requirement of a fixed set of engineerable Hamiltonians, we find t he optimal Hamiltonian once a set of realistic elementary interactions is defined. We provide three examples of this approach. We first apply the optimization protocol to the ground states of the one-dimensional Ising model and a ferromagnetic $p$-spin model but with time-dependent coefficients. We also consider a time-dependent state that interpolates between a product state and the ground state of a $p$-spin model. We determine the time-dependent optimal parent Hamiltonian for these states and analyze the capability of this Hamiltonian of generating the state evolution. Finally, we discuss the connections of our approach to shortcuts to adiabaticity.
We formulate a set of conditions under which dynamics of a time-dependent quantum Hamiltonian are integrable. The main requirement is the existence of a nonabelian gauge field with zero curvature in the space of system parameters. Known solvable mult istate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time-dependence into various quantum integrable models, so that the resulting non-stationary Schrodinger equation is exactly solvable. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
The measurement of circular dichroism (CD) has widely been exploited to distinguish the different enantiomers of chiral structures. It has been applied to natural materials (e.g. molecules) as well as to artificial materials (e.g. nanophotonic struct ures). However, especially for chiral molecules the signal level is very low and increasing the signal-to-noise ratio is of paramount importance to either shorten the necessary measurement time or to lower the minimum detectable molecule concentration. As one solution to this problem, we propose here to use quantum states of light in CD sensing to reduce the noise below the shot noise limit that is encountered when using coherent states of light. Through a multi-parameter estimation approach, we identify the ultimate quantum limit to precision of CD sensing, allowing for general schemes including additional ancillary modes. We show that the ultimate quantum limit can be achieved by various optimal schemes. It includes not only Fock state input in direct sensing configuration but also twin-beam input in ancilla-assisted sensing configuration, for both of which photon number resolving detection needs to be performed as the optimal measurement setting. These optimal schemes offer a significant quantum enhancement even in the presence of additional system loss. The optimality of a practical scheme using a twin-beam state in direct sensing configuration is also investigated in details as a nearly optimal scheme for CD sensing when the actual CD signal is very small. Alternative schemes involving single-photon sources and detectors are also proposed. This work paves the way for further investigations of quantum metrological techniques in chirality sensing.
In this work, we investigate how and to which extent a quantum system can be driven along a prescribed path in Hilbert space by a suitably shaped laser pulse. To calculate the optimal, i.e., the variationally best pulse, a properly defined functional is maximized. This leads to a monotonically convergent algorithm which is computationally not more expensive than the standard optimal-control techniques to push a system, without specifying the path, from a given initial to a given final state. The method is successfully applied to drive the time-dependent density along a given trajectory in real space and to control the time-dependent occupation numbers of a two-level system and of a one-dimensional model for the hydrogen atom.
We present a systematic scheme for optimization of quantum simulations. Specifically, we show how polychromatic driving can be used to significantly improve the driving of Raman transitions in the Lambda system, which opens new possibilities for controlled driven-induced effective dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا