ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme View Synthesis

211   0   0.0 ( 0 )
 نشر من قبل Orazio Gallo
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Extreme View Synthesis, a solution for novel view extrapolation that works even when the number of input images is small--as few as two. In this context, occlusions and depth uncertainty are two of the most pressing issues, and worsen as the degree of extrapolation increases. We follow the traditional paradigm of performing depth-based warping and refinement, with a few key improvements. First, we estimate a depth probability volume, rather than just a single depth value for each pixel of the novel view. This allows us to leverage depth uncertainty in challenging regions, such as depth discontinuities. After using it to get an initial estimate of the novel view, we explicitly combine learned image priors and the depth uncertainty to synthesize a refined image with less artifacts. Our method is the first to show visually pleasing results for baseline magnifications of up to 30X.

قيم البحث

اقرأ أيضاً

We tackle a new problem of semantic view synthesis -- generating free-viewpoint rendering of a synthesized scene using a semantic label map as input. We build upon recent advances in semantic image synthesis and view synthesis for handling photograph ic image content generation and view extrapolation. Direct application of existing image/view synthesis methods, however, results in severe ghosting/blurry artifacts. To address the drawbacks, we propose a two-step approach. First, we focus on synthesizing the color and depth of the visible surface of the 3D scene. We then use the synthesized color and depth to impose explicit constraints on the multiple-plane image (MPI) representation prediction process. Our method produces sharp contents at the original view and geometrically consistent renderings across novel viewpoints. The experiments on numerous indoor and outdoor images show favorable results against several strong baselines and validate the effectiveness of our approach.
Content creation, central to applications such as virtual reality, can be a tedious and time-consuming. Recent image synthesis methods simplify this task by offering tools to generate new views from as little as a single input image, or by converting a semantic map into a photorealistic image. We propose to push the envelope further, and introduce Generative View Synthesis (GVS), which can synthesize multiple photorealistic views of a scene given a single semantic map. We show that the sequential application of existing techniques, e.g., semantics-to-image translation followed by monocular view synthesis, fail at capturing the scenes structure. In contrast, we solve the semantics-to-image translation in concert with the estimation of the 3D layout of the scene, thus producing geometrically consistent novel views that preserve semantic structures. We first lift the input 2D semantic map onto a 3D layered representation of the scene in feature space, thereby preserving the semantic labels of 3D geometric structures. We then project the layered features onto the target views to generate the final novel-view images. We verify the strengths of our method and compare it with several advanced baselines on three different datasets. Our approach also allows for style manipulation and image editing operations, such as the addition or removal of objects, with simple manipulations of the input style images and semantic maps respectively. Visit the project page at https://gvsnet.github.io.
Multi-View Stereo (MVS) is a core task in 3D computer vision. With the surge of novel deep learning methods, learned MVS has surpassed the accuracy of classical approaches, but still relies on building a memory intensive dense cost volume. Novel View Synthesis (NVS) is a parallel line of research and has recently seen an increase in popularity with Neural Radiance Field (NeRF) models, which optimize a per scene radiance field. However, NeRF methods do not generalize to novel scenes and are slow to train and test. We propose to bridge the gap between these two methodologies with a novel network that can recover 3D scene geometry as a distance function, together with high-resolution color images. Our method uses only a sparse set of images as input and can generalize well to novel scenes. Additionally, we propose a coarse-to-fine sphere tracing approach in order to significantly increase speed. We show on various datasets that our method reaches comparable accuracy to per-scene optimized methods while being able to generalize and running significantly faster.
We study the problem of novel view synthesis of a scene comprised of 3D objects. We propose a simple yet effective approach that is neither continuous nor implicit, challenging recent trends on view synthesis. We demonstrate that although continuous radiance field representations have gained a lot of attention due to their expressive power, our simple approach obtains comparable or even better novel view reconstruction quality comparing with state-of-the-art baselines while increasing rendering speed by over 400x. Our model is trained in a category-agnostic manner and does not require scene-specific optimization. Therefore, it is able to generalize novel view synthesis to object categories not seen during training. In addition, we show that with our simple formulation, we can use view synthesis as a self-supervision signal for efficient learning of 3D geometry without explicit 3D supervision.
We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse camera viewpoints. The resulting method incorporates occlusion reasoning, improving performance on challenging scene features such as object boundaries, lighting reflections, thin structures, and scenes with high depth complexity. We show that our method achieves high-quality, state-of-the-art results on two datasets: the Kalantari light field dataset, and a new camera array dataset, Spaces, which we make publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا