ﻻ يوجد ملخص باللغة العربية
In the dynamically assisted Schwinger mechanism, the pair production probability is significantly enhanced by including a weak, rapidly varying field in addition to a strong, slowly varying field. In a previous paper we showed that several features of dynamical assistance can be understood by a perturbative treatment of the weak field. Here we show how to calculate the prefactors of the higher-orders terms, which is important because the dominant contribution can come from higher orders. We give a new and independent derivation of the momentum spectrum using the worldline formalism, and extend our WKB approach to calculate the amplitude to higher orders. We show that these methods are also applicable to doubly assisted pair production.
We consider stimulated pair production employing strong-field QED in a high-intensity laser background. In an infinite plane wave, we show that light-cone quasi-momentum can only be transferred to the created pair as a multiple of the laser frequency
We isolate the two-step mechanism involving a real intermediate photon from the one-step mechanism involving a virtual photon for the trident process in a constant crossed field. The two-step process is shown to agree with an integration over polaris
We extend the Boltzmann equation in the relaxation time approximation to explicitly include transitions between particles forming an interacting mixture. Using the detailed balance condition as well as conditions of energy-momentum and current conser
We present the first calculation of the next-to-next-to-leading order threshold soft function for top quark pair production at hadron colliders, with full velocity dependence of the massive top quarks. Our results are fully analytic, and can be entir
We propose a simple non-perturbative formalism for false vacuum decay using functional methods. We introduce the quasi-stationary effective action, a bounce action that non-perturbatively incorporates radiative corrections and is robust to strong cou