ترغب بنشر مسار تعليمي؟ اضغط هنا

OSSOS XII: Variability studies of 65 Trans-Neptunian Objects using the Hyper Suprime-Cam

50   0   0.0 ( 0 )
 نشر من قبل Mike Alexandersen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present variability measurements and partial light curves of Trans-Neptunian Objects (TNOs) from a two-night pilot study using Hyper Suprime-Cam (HSC) on the Subaru Telescope (Maunakea, Hawaii, USA). Subarus large aperture (8-m) and HSCs large field of view (1.77 square degrees) allow us to obtain measurements of multiple objects with a range of magnitudes in each telescope pointing. We observed 65 objects with m_r = 22.6--25.5 mag in just six pointings, allowing 20--24 visits of each pointing over the two nights. Our sample, all discovered in the recent Outer Solar System Origins Survey (OSSOS), span absolute magnitudes H_r = 6.2--10.8 mag and thus investigates smaller objects than previous light curve projects have typically studied. Our data supports the existence of a correlation between light curve amplitude and absolute magnitude seen in other works, but does not support a correlation between amplitude and orbital inclination. Our sample includes a number of objects from different dynamical populations within the trans-Neptunian region, but we do not find any relationship between variability and dynamical class. We were only able to estimate periods for 12 objects in the sample and found that a longer baseline of observations is required for reliable period analysis. We find that 31 objects (just under half of our sample) have variability greater than 0.4 magnitudes during all of the observations; in smaller 1.25 hr, 1.85 hr and 2.45 hr windows, the median variability is 0.13, 0.16 and 0.19 mags, respectively. The fact that variability on this scale is common for small TNOs has important implications for discovery surveys (such as OSSOS or the Large Synoptic Survey Telescope) and color measurements.

قيم البحث

اقرأ أيضاً

We present a visible multi-band photometry of trans-Neptunian objects (TNOs) observed by the Subaru Telescope in the framework of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) from March in 2014 to September in 2016. We measured the five broad -band (g, r, i, z, and Y) colors over the wavelength range from 0.4 um to 1.0 um for 30 known TNOs using the HSC-SSP survey data covering ~500 deg2 of sky within +/-30 deg of ecliptic latitude. This dataset allows us to characterize the dynamical classes based on visible reflectance spectra as well as to examine the relationship between colors and the other parameters such as orbital elements. Our results show that the hot classical and scattered populations share similar color distributions, while the cold classical population has a reflective decrease toward shorter wavelength below the i band. Based on the obtained color properties, we found that the TNO sample examined in the present work can be separated into two groups by inclination (I), the low-I population consisting of cold classical objects and high-I population consisting of hot classical and scattered objects. The whole sample exhibits an anti-correlation between colors and inclination, but no significant correlation between colors and semi-major axis, perihelion distance, eccentricity, or absolute magnitude. The color-inclination correlation does not seem to be continuous over the entire inclination range. Rather, it is seen only in the high-I population. We found that the low- and high-I populations are distinguishable in the g-i vs. eccentricity plot, but four high-I objects show g-i colors similar to those of the low-I population. If we exclude these four objects, the high-I objects show a positive correlation between g-i and eccentricity and a negative correlation between g-i and inclination with high significance levels.
The Outer Solar System Origins Survey (OSSOS), a wide-field imaging program in 2013-2017 with the Canada-France-Hawaii Telescope, surveyed 155 deg$^{2}$ of sky to depths of $m_r = 24.1$-25.2. We present 838 outer Solar System discoveries that are ent irely free of ephemeris bias. This increases the inventory of trans-Neptunian objects (TNOs) with accurately known orbits by nearly 50%. Each minor planet has 20-60 Gaia/Pan-STARRS-calibrated astrometric measurements made over 2-5 oppositions, which allows accurate classification of their orbits within the trans-Neptunian dynamical populations. The populations orbiting in mean-motion resonance with Neptune are key to understanding Neptunes early migration. Our 313 resonant TNOs, including 132 plutinos, triple the available characterized sample and include new occupancy of distant resonances out to semi-major axis $a sim 130$ au. OSSOS doubles the known population of the non-resonant Kuiper belt, providing 436 TNOs in this region, all with exceptionally high-quality orbits of $a$ uncertainty $sigma_{a} leq 0.1%$; they show the belt exists from $a gtrsim 37$ au, with a lower perihelion bound of $35$ au. We confirm the presence of a concentrated low-inclination $asimeq 44$ au kernel population and a dynamically cold population extending beyond the 2:1 resonance. We finely quantify the surveys observational biases. Our survey simulator provides a straightforward way to impose these biases on models of the trans-Neptunian orbit distributions, allowing statistical comparison to the discoveries. The OSSOS TNOs, unprecedented in their orbital precision for the size of the sample, are ideal for testing concepts of the history of giant planet migration in the Solar System.
We present results of 6 years of observations, reduced and analyzed with the same tools in a systematic way. We report completely new data for 15 objects, for 5 objects we present a new analysis of previously published results plus additional data an d for 9 objects we present a new analysis of data already published. Lightcurves, possible rotation periods and photometric amplitudes are reported for all of them. The photometric variability is smaller than previously thought: the mean amplitude of our sample is 0.1mag and only around 15% of our sample has a larger variability than 0.15mag. The smaller variability than previously thought seems to be a bias of previous observations. We find a very weak trend of faster spinning objects towards smaller sizes, which appears to be consistent with the fact that the smaller objects are more collisionally evolved, but could also be a specific feature of the Centaurs, the smallest objects in our sample. We also find that the smaller the objects, the larger their amplitude, which is also consistent with the idea that small objects are more collisionally evolved and thus more deformed. Average rotation rates from our work are 7.5h for the whole sample, 7.6h for the TNOs alone and 7.3h for the Centaurs. All of them appear to be somewhat faster than what one can derive from a compilation of the scientific literature and our own results. Maxwellian fits to the rotation rate distribution give mean values of 7.5h (for the whole sample) and 7.3h (for the TNOs only). Assuming hydrostatic equilibrium we can determine densities from our sample under the additional assumption that the lightcurves are dominated by shape effects, which is likely not realistic. The resulting average density is 0.92g/cm^3 which is not far from the density constraint that one can derive from the apparent spin barrier that we observe.
In this paper, we describe the optical imaging data processing pipeline developed for the Subaru Telescopes Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescopes Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high level processing steps that generate coadded images and science-ready catalogs as well as low-level detrending and image characterizations.
The thermal emission of transneptunian objects (TNO) and Centaurs has been observed at mid- and far-infrared wavelengths - with the biggest contributions coming from the Spitzer and Herschel space observatories-, and the brightest ones also at sub-mi llimeter and millimeter wavelengths. These measurements allowed to determine the sizes and albedos for almost 180 objects, and densities for about 25 multiple systems. The derived very low thermal inertias show evidence for a decrease at large heliocentric distances and for high-albedo objects, which indicates porous and low-conductivity surfaces. The radio emissivity was found to be low ($epsilon_r$=0.70$pm$0.13) with possible spectral variations in a few cases. The general increase of density with object size points to different formation locations or times. The mean albedos increase from about 5-6% (Centaurs, Scattered-Disk Objects) to 15% for the Detached objects, with distinct cumulative albedo distributions for hot and cold classicals. The color-albedo separation in our sample is evidence for a compositional discontinuity in the young Solar System. The median albedo of the sample (excluding dwarf planets and the Haumea family) is 0.08, the albedo of Haumea family members is close to 0.5, best explained by the presence of water ice. The existing thermal measurements remain a treasure trove at times where the far-infrared regime is observationally not accessible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا