ﻻ يوجد ملخص باللغة العربية
Instead of looking at the lengths of synchronizing words as in v{C}ernys conjecture, we look at the switch count of such words, that is, we only count the switches from one letter to another. Where the synchronizing words of the v{C}erny automata $mathcal{C}_n$ have switch count linear in $n$, we wonder whether synchronizing automata exist for which every synchronizing word has quadratic switch count. The answer is positive: we prove that switch count has the same complexity as synchronizing word length. We give some series of synchronizing automata yielding quadratic switch count, the best one reaching $frac{2}{3} n^2 + O(n)$ as switch count. We investigate all binary automata on at most 9 states and determine the maximal possible switch count. For all $3leq nleq 9$, a strictly higher switch count can be reached by allowing more symbols. This behaviour differs from length, where for every $n$, no automata are known with higher synchronization length than $mathcal{C}_n$, which has only two symbols. It is not clear if this pattern extends to larger $n$. For $ngeq 12$, our best construction only has two symbols.
In [1], we introduced the weakly synchronizing languages for probabilistic automata. In this report, we show that the emptiness problem of weakly synchronizing languages for probabilistic automata is undecidable. This implies that the decidability re
We present an infinite series of $n$-state Eulerian automata whose reset words have length at least $(n^2-3)/2$. This improves the current lower bound on the length of shortest reset words in Eulerian automata. We conjecture that $(n^2-3)/2$ also for
It was conjectured by v{C}erny in 1964 that a synchronizing DFA on $n$ states always has a shortest synchronizing word of length at most $(n-1)^2$, and he gave a sequence of DFAs for which this bound is reached. In this paper, we investigate the ro
We consider the problem {sc Max Sync Set} of finding a maximum synchronizing set of states in a given automaton. We show that the decision version of this problem is PSPACE-complete and investigate the approximability of {sc Max Sync Set} for binary
It was conjectured by v{C}erny in 1964, that a synchronizing DFA on $n$ states always has a synchronizing word of length at most $(n-1)^2$, and he gave a sequence of DFAs for which this bound is reached. Until now a full analysis of all DFAs reaching