ﻻ يوجد ملخص باللغة العربية
ALMA observations of protoplanetary disks acquired by the Disk Substructure at High Angular Resolution Project (DSHARP) resolve the dust and gas emission on angular scales as small as 3 astronomical units, offering an unprecedented detailed view of the environment where planets form. In this article, we present and discuss observations of the HD 163296 protoplanetary disk that imaged the 1.25 mm dust continuum and $^{12}$CO J=2-1 rotational line emission at a spatial resolution of 4 and 10 au, respectively. The continuum observations resolve and allow us to characterize the previously discovered dust rings at radii of 67 and 100 au. They also reveal new small scale structures, such as a dark gap at 10 au, a bright ring at 15 au, a dust crescent at a radius of 55 au, and several fainter azimuthal asymmetries. The observations of the CO and dust emission inform about the vertical structure of the disk and allow us to directly constrain the dust extinction optical depth at the dust rings. Furthermore, the observed asymmetries in the dust continuum emission corroborate to the hypothesis that the complex structure of the HD 163296 disk is the result of the gravitational interaction with yet unseen planets.
We introduce the Disk Substructures at High Angular Resolution Project (DSHARP), one of the initial Large Programs conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The primary goal of DSHARP is to find and characterize substruc
We present a detailed analysis of new ALMA observations of the disk around the T-Tauri star HD 143006, which at 46 mas (7.6 au) resolution reveal new substructures in the 1.25 mm continuum emission. The disk resolves into a series of concentric rings
To characterize the substructures induced in protoplanetary disks by the interaction between stars in multiple systems, we study the $1.25,$mm continuum and the $^{12}$CO$(J=2-1)$ spectral line emission of the triple systems HT Lup and AS 205, at sca
Spatially resolved continuum observations of planet-forming disks show prominent ring and gap structures in their dust distribution. However, the picture from gas observations is much less clear and constraints on the radial gas density structure (i.
We report Submillimeter Array (SMA) observations of CO (J=2--1, 3--2 and 6--5) and its isotopologues (13CO J=2--1, C18O J=2--1 and C17O J=3--2) in the disk around the Herbig Ae star HD 163296 at ~2 (250 AU) resolution, and interpret these data in the