ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse Bayesian mass-mapping with uncertainties: hypothesis testing of structure

61   0   0.0 ( 0 )
 نشر من قبل Matthew Price
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A crucial aspect of mass-mapping, via weak lensing, is quantification of the uncertainty introduced during the reconstruction process. Properly accounting for these errors has been largely ignored to date. We present a new method to reconstruct maximum a posteriori (MAP) convergence maps by formulating an unconstrained Bayesian inference problem with Laplace-type l1-norm sparsity-promoting priors, which we solve via convex optimization. Approaching mass-mapping in this manner allows us to exploit recent developments in probability concentration theory to infer theoretically conservative uncertainties for our MAP reconstructions, without relying on assumptions of Gaussianity. For the first time these methods allow us to perform hypothesis testing of structure, from which it is possible to distinguish between physical objects and artifacts of the reconstruction. Here we present this new formalism, demonstrate the method on simulations, before applying the developed formalism to two observational datasets of the Abel-520 cluster. Initial reconstructions of the Abel-520 catalogs reported the detection of an anomalous dark core -- an over dense region with no optical counterpart -- which was taken to be evidence for self-interacting dark-matter. In our Bayesian framework it is found that neither Abel-520 dataset can conclusively determine the physicality of such dark cores at 99% confidence. However, in both cases the recovered MAP estimators are consistent with both sets of data.

قيم البحث

اقرأ أيضاً

Until recently mass-mapping techniques for weak gravitational lensing convergence reconstruction have lacked a principled statistical framework upon which to quantify reconstruction uncertainties, without making strong assumptions of Gaussianity. In previous work we presented a sparse hierarchical Bayesian formalism for convergence reconstruction that addresses this shortcoming. Here, we draw on the concept of local credible intervals (cf. Bayesian error bars) as an extension of the uncertainty quantification techniques previously detailed. These uncertainty quantification techniques are benchmarked against those recovered via Px-MALA - a state of the art proximal Markov Chain Monte Carlo (MCMC) algorithm. We find that typically our recovered uncertainties are everywhere conservative, of similar magnitude and highly correlated (Pearson correlation coefficient $geq 0.85$) with those recovered via Px-MALA. Moreover, we demonstrate an increase in computational efficiency of $mathcal{O}(10^6)$ when using our sparse Bayesian approach over MCMC techniques. This computational saving is critical for the application of Bayesian uncertainty quantification to large-scale stage IV surveys such as LSST and Euclid.
Weak lensing convergence maps - upon which higher order statistics can be calculated - can be recovered from observations of the shear field by solving the lensing inverse problem. For typical surveys this inverse problem is ill-posed (often seriousl y) leading to substantial uncertainty on the recovered convergence maps. In this paper we propose novel methods for quantifying the Bayesian uncertainty in the location of recovered features and the uncertainty in the cumulative peak statistic - the peak count as a function of signal to noise ratio (SNR). We adopt the sparse hierarchical Bayesian mass-mapping framework developed in previous work, which provides robust reconstructions and principled statistical interpretation of reconstructed convergence maps without the need to assume or impose Gaussianity. We demonstrate our uncertainty quantification techniques on both Bolshoi N-body (cluster scale) and Buzzard V-1.6 (large scale structure) N-body simulations. For the first time, this methodology allows one to recover approximate Bayesian upper and lower limits on the cumulative peak statistic at well defined confidence levels.
In this paper, we propose a Bayesian Hypothesis Testing Algorithm (BHTA) for sparse representation. It uses the Bayesian framework to determine active atoms in sparse representation of a signal. The Bayesian hypothesis testing based on three assump tions, determines the active atoms from the correlations and leads to the activity measure as proposed in Iterative Detection Estimation (IDE) algorithm. In fact, IDE uses an arbitrary decreasing sequence of thresholds while the proposed algorithm is based on a sequence which derived from hypothesis testing. So, Bayesian hypothesis testing framework leads to an improved version of the IDE algorithm. The simulations show that Hard-version of our suggested algorithm achieves one of the best results in terms of estimation accuracy among the algorithms which have been implemented in our simulations, while it has the greatest complexity in terms of simulation time.
To date weak gravitational lensing surveys have typically been restricted to small fields of view, such that the $textit{flat-sky approximation}$ has been sufficiently satisfied. However, with Stage IV surveys ($textit{e.g. LSST}$ and $textit{Euclid} $) imminent, extending mass-mapping techniques to the sphere is a fundamental necessity. As such, we extend the sparse hierarchical Bayesian mass-mapping formalism presented in previous work to the spherical sky. For the first time, this allows us to construct $textit{maximum a posteriori}$ spherical weak lensing dark-matter mass-maps, with principled Bayesian uncertainties, without imposing or assuming Gaussianty. We solve the spherical mass-mapping inverse problem in the analysis setting adopting a sparsity promoting Laplace-type wavelet prior, though this theoretical framework supports all log-concave posteriors. Our spherical mass-mapping formalism facilitates principled statistical interpretation of reconstructions. We apply our framework to convergence reconstruction on high resolution N-body simulations with pseudo-Euclid masking, polluted with a variety of realistic noise levels, and show a significant increase in reconstruction fidelity compared to standard approaches. Furthermore we perform the largest joint reconstruction to date of the majority of publicly available shear observational datasets (combining DESY1, KiDS450 and CFHTLens) and find that our formalism recovers a convergence map with significantly enhanced small-scale detail. Within our Bayesian framework we validate, in a statistically rigorous manner, the communitys intuition regarding the need to smooth spherical Kaiser-Squires estimates to provide physically meaningful convergence maps. Such approaches cannot reveal the small-scale physical structures that we recover within our framework.
The problem of discriminating between many quantum channels with certainty is analyzed under the assumption of prior knowledge of algebraic relations among possible channels. It is shown, by explicit construction of a novel family of quantum algorith ms, that when the set of possible channels faithfully represents a finite subgroup of SU(2) (e.g., $C_n, D_{2n}, A_4, S_4, A_5$) the recently-developed techniques of quantum signal processing can be modified to constitute subroutines for quantum hypothesis testing. These algorithms, for group quantum hypothesis testing (G-QHT), intuitively encode discrete properties of the channel set in SU(2) and improve query complexity at least quadratically in $n$, the size of the channel set and group, compared to naive repetition of binary hypothesis testing. Intriguingly, performance is completely defined by explicit group homomorphisms; these in turn inform simple constraints on polynomials embedded in unitary matrices. These constructions demonstrate a flexible technique for mapping questions in quantum inference to the well-understood subfields of functional approximation and discrete algebra. Extensions to larger groups and noisy settings are discussed, as well as paths by which improved protocols for quantum hypothesis testing against structured channel sets have application in the transmission of reference frames, proofs of security in quantum cryptography, and algorithms for property testing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا