ترغب بنشر مسار تعليمي؟ اضغط هنا

Exoplanet Clouds

227   0   0.0 ( 0 )
 نشر من قبل Christiane Helling
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Clouds also form in atmospheres of planets that orbit other stars than our Sun, in so-called extrasolar planets or exoplanets. Exoplanet atmospheres can be chemically extremely rich. Exoplanet clouds are therefor made of a mix of materials that changes throughout the atmosphere. They affect the atmospheres through element depletion and through absorption and scattering, hence, they have a profound impact on the atmospheres energy budget. While astronomical observations point us to the presence of extrasolar clouds and make first suggestions on particle sizes and material compositions, we require fundamental and complex modelling work to merge the individual observations into a coherent picture. Part of this is to develop an understanding for cloud formation in non-terrestrial environments.



قيم البحث

اقرأ أيضاً

Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmosphe ric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider the role clouds play in influencing the spectra of planets as well as their habitability and detectability. We briefly summarize how clouds are treated in terrestrial climate models and consider the far simpler approaches that have been taken so far to model exoplanet clouds, the evidence for which we also review. Since clouds play a major role in the atmospheres of certain classes of brown dwarfs we briefly discuss brown dwarf cloud modeling as well. We also review how the scattering and extinction efficiencies of cloud particles may be approximated in certain limiting cases of small and large particles in order to facilitate physical understanding. Since clouds play such important roles in planetary atmospheres, cloud modeling may well prove to be the limiting factor in our ability to interpret future observations of extrasolar planets.
The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I = 4-13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the stars ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.
Precise and, if possible, accurate characterization of exoplanets cannot be dissociated from the characterization of their host stars. In this chapter we discuss different methods and techniques used to derive fundamental properties and atmospheric p arameters of exoplanet-host stars. The main limitations, advantages and disadvantages, as well as corresponding typical measurement uncertainties of each method are presented.
Results from the Kepler mission indicate that the occurrence rate of small planets ($<3$ $R_oplus$) in the habitable zone of nearby low-mass stars may be as high as 80%. Despite this abundance, probing the conditions and atmospheric properties on any habitable-zone planet is extremely difficult and has remained elusive to date. Here, we report the detection of water vapor and the likely presence of liquid and icy water clouds in the atmosphere of the $2.6$ $R_oplus$ habitable-zone planet K2-18b. The simultaneous detection of water vapor and clouds in the mid-atmosphere of K2-18b is particularly intriguing because K2-18b receives virtually the same amount of total insolation from its host star ($1368_{-107}^{+114}$ W m$^{-2}$) as the Earth receives from the Sun (1361 W m$^{-2}$), resulting in the right conditions for water vapor to condense and explain the detected clouds. In this study, we observed nine transits of K2-18b using HST/WFC3 in order to achieve the necessary sensitivity to detect the water vapor, and we supplement this data set with Spitzer and K2 observations to obtain a broader wavelength coverage. While the thick hydrogen-dominated envelope we detect on K2-18b means that the planet is not a true Earth analog, our observations demonstrate that low-mass habitable-zone planets with the right conditions for liquid water are accessible with state-of-the-art telescopes.
Over the past three decades, we have witnessed one of the great revolutions in our understanding of the cosmos - the dawn of the Exoplanet Era. Where once we knew of just one planetary system (the Solar system), we now know of thousands, with new sys tems being announced on a weekly basis. Of the thousands of planetary systems we have found to date, however, there is only one that we can study up-close and personal - the Solar system. In this review, we describe our current understanding of the Solar system for the exoplanetary science community - with a focus on the processes thought to have shaped the system we see today. In section one, we introduce the Solar system as a single well studied example of the many planetary systems now observed. In section two, we describe the Solar systems small body populations as we know them today - from the two hundred and five known planetary satellites to the various populations of small bodies that serve as a reminder of the systems formation and early evolution. In section three, we consider our current knowledge of the Solar systems planets, as physical bodies. In section four, we discuss the research that has been carried out into the Solar systems formation and evolution, with a focus on the information gleaned as a result of detailed studies of the systems small body populations. In section five, we discuss our current knowledge of planetary systems beyond our own - both in terms of the planets they host, and in terms of the debris that we observe orbiting their host stars. As we learn ever more about the diversity and ubiquity of other planetary systems, our Solar system will remain the key touchstone that facilitates our understanding and modelling of those newly found systems, and we finish section five with a discussion of the future surveys that will further expand that knowledge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا