ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Symmetric ADMM for Separable Convex Optimization

208   0   0.0 ( 0 )
 نشر من قبل Jianchao Bai
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Alternating Direction Method of Multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a Generalized Symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of $p$ block variables while the other has $q$ block variables, where $p ge 1$ and $q ge 1$ are two integers. The two grouped variables are updated in a {it Gauss-Seidel} scheme, while the variables within each group are updated in a {it Jacobi} scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case $O(1/t)$ ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising.

قيم البحث

اقرأ أيضاً

An inexact accelerated stochastic Alternating Direction Method of Multipliers (AS-ADMM) scheme is developed for solving structured separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmoo th convex function and a smooth function which is an average of many component convex functions. Problems having this structure often arise in machine learning and data mining applications. AS-ADMM combines the ideas of both ADMM and the stochastic gradient methods using variance reduction techniques. One of the ADMM subproblems employs a linearization technique while a similar linearization could be introduced for the other subproblem. For a specified choice of the algorithm parameters, it is shown that the objective error and the constraint violation are $mathcal{O}(1/k)$ relative to the number of outer iterations $k$. Under a strong convexity assumption, the expected iterate error converges to zero linearly. A linearized variant of AS-ADMM and incremental sampling strategies are also discussed. Numerical experiments with both stochastic and deterministic ADMM algorithms show that AS-ADMM can be particularly effective for structured optimization arising in big data applications.
Large scale, non-convex optimization problems arising in many complex networks such as the power system call for efficient and scalable distributed optimization algorithms. Existing distributed methods are usually iterative and require synchronizatio n of all workers at each iteration, which is hard to scale and could result in the under-utilization of computation resources due to the heterogeneity of the subproblems. To address those limitations of synchronous schemes, this paper proposes an asynchronous distributed optimization method based on the Alternating Direction Method of Multipliers (ADMM) for non-convex optimization. The proposed method only requires local communications and allows each worker to perform local updates with information from a subset of but not all neighbors. We provide sufficient conditions on the problem formulation, the choice of algorithm parameter and network delay, and show that under those mild conditions, the proposed asynchronous ADMM method asymptotically converges to the KKT point of the non-convex problem. We validate the effectiveness of asynchronous ADMM by applying it to the Optimal Power Flow problem in multiple power systems and show that the convergence of the proposed asynchronous scheme could be faster than its synchronous counterpart in large-scale applications.
In this paper, we develop a parameterized proximal point algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a wors t-case O(1/t) convergence rate, wheret denotes the iteration number. By properly choosing the algorithm parameters, numerical experiments on solving a sparse optimization problem arising from statistical learning show that our P-PPA could perform significantly better than other state-of-the-art methods, such as the alternating direction method of multipliers and the relaxed proximal point algorithm.
This paper presents a majorized alternating direction method of multipliers (ADMM) with indefinite proximal terms for solving linearly constrained $2$-block convex composite optimization problems with each block in the objective being the sum of a no n-smooth convex function and a smooth convex function, i.e., $min_{x in {cal X}, ; y in {cal Y}}{p(x)+f(x) + q(y)+g(y)mid A^* x+B^* y = c}$. By choosing the indefinite proximal terms properly, we establish the global convergence and $O(1/k)$ ergodic iteration-complexity of the proposed method for the step-length $tau in (0, (1+sqrt{5})/2)$. The computational benefit of using indefinite proximal terms within the ADMM framework instead of the current requirement of positive semidefinite ones is also demonstrated numerically. This opens up a new way to improve the practical performance of the ADMM and related methods.
The paper considers the minimization of a separable convex function subject to linear ascending constraints. The problem arises as the core optimization in several resource allocation scenarios, and is a special case of an optimization of a separable convex function over the bases of a polymatroid with a certain structure. The paper presents a survey of state-of-the-art algorithms that solve this optimization problem. The algorithms are applicable to the class of separable convex objective functions that need not be smooth or strictly convex. When the objective function is a so-called $d$-separable function, a simpler linear time algorithm solves the problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا