ﻻ يوجد ملخص باللغة العربية
We propose a new variational model for joint image reconstruction and motion estimation in spatiotemporal imaging, which is investigated along a general framework that we present with shape theory. This model consists of two components, one for conducting modified static image reconstruction, and the other performs sequentially indirect image registration. For the latter, we generalize the large deformation diffeomorphic metric mapping framework into the sequentially indirect registration setting. The proposed model is compared theoretically against alternative approaches (optical flow based model and diffeomorphic motion models), and we demonstrate that the proposed model has desirable properties in terms of the optimal solution. The theoretical derivations and efficient algorithms are also presented for a time-discretized scenario of the proposed model, which show that the optimal solution of the time-discretized version is consistent with that of the time-continuous one, and most of the computational components is the easy-implemented linearized deformation. The complexity of the algorithm is analyzed as well. This work is concluded by some numerical examples in 2D space + time tomography with very sparse and/or highly noisy data.
Accelerating the acquisition of magnetic resonance imaging (MRI) is a challenging problem, and many works have been proposed to reconstruct images from undersampled k-space data. However, if the main purpose is to extract certain quantitative measure
The study of 3D hyperspectral image (HSI) reconstruction refers to the inverse process of snapshot compressive imaging, during which the optical system, e.g., the coded aperture snapshot spectral imaging (CASSI) system, captures the 3D spatial-spectr
We propose a new joint image reconstruction method by recovering edge directly from observed data. More specifically, we reformulate joint image reconstruction with vectorial total-variation regularization as an $l_1$ minimization problem of the Jaco
We derive a new 3D model for magnetic particle imaging (MPI) that is able to incorporate realistic magnetic fields in the reconstruction process. In real MPI scanners, the generated magnetic fields have distortions that lead to deformed magnetic low-
The recent development of energy-resolving cameras opens the way to new types of applications and imaging systems. In this work, we consider computerized tomography (CT) with fan beam geometry and equipped with such cameras. The measured radiation is