ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Variational Model for Joint Image Reconstruction and Motion Estimation in Spatiotemporal Imaging

87   0   0.0 ( 0 )
 نشر من قبل Chong Chen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new variational model for joint image reconstruction and motion estimation in spatiotemporal imaging, which is investigated along a general framework that we present with shape theory. This model consists of two components, one for conducting modified static image reconstruction, and the other performs sequentially indirect image registration. For the latter, we generalize the large deformation diffeomorphic metric mapping framework into the sequentially indirect registration setting. The proposed model is compared theoretically against alternative approaches (optical flow based model and diffeomorphic motion models), and we demonstrate that the proposed model has desirable properties in terms of the optimal solution. The theoretical derivations and efficient algorithms are also presented for a time-discretized scenario of the proposed model, which show that the optimal solution of the time-discretized version is consistent with that of the time-continuous one, and most of the computational components is the easy-implemented linearized deformation. The complexity of the algorithm is analyzed as well. This work is concluded by some numerical examples in 2D space + time tomography with very sparse and/or highly noisy data.



قيم البحث

اقرأ أيضاً

Accelerating the acquisition of magnetic resonance imaging (MRI) is a challenging problem, and many works have been proposed to reconstruct images from undersampled k-space data. However, if the main purpose is to extract certain quantitative measure s from the images, perfect reconstructions may not always be necessary as long as the images enable the means of extracting the clinically relevant measures. In this paper, we work on jointly predicting cardiac motion estimation and segmentation directly from undersampled data, which are two important steps in quantitatively assessing cardiac function and diagnosing cardiovascular diseases. In particular, a unified model consisting of both motion estimation branch and segmentation branch is learned by optimising the two tasks simultaneously. Additional corresponding fully-sampled images are incorporated into the network as a parallel sub-network to enhance and guide the learning during the training process. Experimental results using cardiac MR images from 220 subjects show that the proposed model is robust to undersampled data and is capable of predicting results that are close to that from fully-sampled ones, while bypassing the usual image reconstruction stage.
The study of 3D hyperspectral image (HSI) reconstruction refers to the inverse process of snapshot compressive imaging, during which the optical system, e.g., the coded aperture snapshot spectral imaging (CASSI) system, captures the 3D spatial-spectr al signal and encodes it to a 2D measurement. While numerous sophisticated neural networks have been elaborated for end-to-end reconstruction, trade-offs still need to be made among performance, efficiency (training and inference time), and feasibility (the ability of restoring high resolution HSI on limited GPU memory). This raises a challenge to design a new baseline to conjointly meet the above requirements. In this paper, we fill in this blank by proposing a Spatial/Spectral Invariant Residual U-Net, namely SSI-ResU-Net. It differentiates with U-Net in three folds--1) scale/spectral-invariant learning, 2) nested residual learning, and 3) computational efficiency. Benefiting from these three modules, the proposed SSI-ResU-Net outperforms the current state-of-the-art method TSA-Net by over 3 dB in PSNR and 0.036 in SSIM while only using 2.82% trainable parameters. To the greatest extent, SSI-ResU-Net achieves competing performance with over 77.3% reduction in terms of floating-point operations (FLOPs), which for the first time, makes high-resolution HSI reconstruction feasible under practical application scenarios. Code and pre-trained models are made available at https://github.com/Jiamian-Wang/HSI_baseline.
We propose a new joint image reconstruction method by recovering edge directly from observed data. More specifically, we reformulate joint image reconstruction with vectorial total-variation regularization as an $l_1$ minimization problem of the Jaco bian of the underlying multi-modality or multi-contrast images. Derivation of data fidelity for Jacobian and transformation of noise distribution are also detailed. The new minimization problem yields an optimal $O(1/k^2)$ convergence rate, where $k$ is the iteration number, and the per-iteration cost is low thanks to the close-form matrix-valued shrinkage. We conducted numerical tests on a number multi-contrast magnetic resonance image (MRI) datasets, which show that the proposed method significantly improves reconstruction efficiency and accuracy compared to the state-of-the-arts.
We derive a new 3D model for magnetic particle imaging (MPI) that is able to incorporate realistic magnetic fields in the reconstruction process. In real MPI scanners, the generated magnetic fields have distortions that lead to deformed magnetic low- field volumes (LFV) with the shapes of ellipsoids or bananas instead of ideal field-free points (FFP) or lines (FFL), respectively. Most of the common model-based reconstruction schemes in MPI use however the idealized assumption of an ideal FFP or FFL topology and, thus, generate artifacts in the reconstruction. Our model-based approach is able to deal with these distortions and can generally be applied to dynamic magnetic fields that are approximately parallel to their velocity field. We show how this new 3D model can be discretized and inverted algebraically in order to recover the magnetic particle concentration. To model and describe the magnetic fields, we use decompositions of the fields in spherical harmonics. We complement the description of the new model with several simulations and experiments.
169 - Lorenz Kuger , Gael Rigaud 2020
The recent development of energy-resolving cameras opens the way to new types of applications and imaging systems. In this work, we consider computerized tomography (CT) with fan beam geometry and equipped with such cameras. The measured radiation is then a function of the positions of the source and detectors and of the energy of the incoming photons. Due to the Compton effect, the variations in energy (or spectrum) of the measurement are modeled in terms of scattering events leading to the so-called Compton scattering tomography (CST). We propose an analysis of the spectral data in terms of modelling and mapping properties which results in a general reconstruction strategy. Thanks to the supplementary information given by the energy, this joint CT-CST scanner makes accurate reconstructions of characteristics of the sought-for object possible for very few source positions and a small number of detectors. The general reconstruction strategy is finally validated on synthetic data via a total variation iterative scheme. We further show how the method can be extended to high energetic polychromatic radiation sources. Also illustrative, this work motivates the potential of combining conventional CT and Compton scattering imaging (CSI) with various architectures in 2D and 3D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا