ﻻ يوجد ملخص باللغة العربية
The compression of SH$_2$ and its subsequent decomposition to SH$_3$, presumably in a cubic Im$overline{3}$m structure, has lead to the discovery of conventional superconductivity with the highest measured and confirmed $T_c$ to date, 203 K at 160 GPa. Recent theoretical studies suggest that a mixture of S with other elements of the chalcogen group could improve the superconducting temperature. Here, we present a detailed analysis of the thermodynamic properties of S and Se mixtures in the bcc lattice with Im$overline{3}$m symmetry using a cluster expansion technique to explore the phase diagram of S$_x$Se$_{1-x}$H$_{3}$. In contrast to earlier reports, we find that S$_{0.5}$Se$_{0.5}$H$_3$ is not stable in the pressure range between 150-200 GPa. However, phases at compositions S$_{0.2}$Se$_{0.8}$H$_3$, S$_{0.overline{3}}$Se$_{0.overline{6}}$H$_3$, and S$_{0.6}$Se$_{0.4}$H$_3$ are stable at 200 GPa, while additional phases at S$_{0.25}$Se$_{0.75}$H$_3$ and S$_{0.75}$Se$_{0.25}$H$_3$ are accessible at lower pressures. Electron-phonon calculations show that the values of $T_c$ are consistently lower for all ternary phases, indicating that mixtures of S and Se with H might not be a viable route towards compounds with improved superconducting properties.
We have investigated the optical properties of thin films of topological insulators Bi$_{2}$Te$_{3}$, Bi$_{2}$Se$_{3}$ and their alloys Bi$_2$(Te$_{1-x}$Se$_x$)$_3$ on BaF$_{2}$ substrates by a combination of infrared ellipsometry and reflectivity in
The BCS-BEC crossover from strongly overlapping Cooper pairs to non-overlapping composite bosons in the strong coupling limit has been a long-standing issue of interacting many-body fermion systems. Recently, FeSe semimetal with hole and electron ban
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide
The challenge of parasitic bulk doping in Bi-based 3D topological insulator materials is still omnipresent, especially when preparing samples by molecular beam epitaxy (MBE). Here, we present a heterostructure approach for epitaxial BSTS growth. A th
After our first discovery of superconductivity (SC) with $T_C$=3.7 K in TlNi$_2$Se$_2$, we grew successfully a series of TlNi$_2$Se$_{2-x}$S$_x$ (0.0 $leq$ x $leq$2.0) single crystals. The measurements of resistivity, susceptibility and specific heat