ﻻ يوجد ملخص باللغة العربية
We study locally compact metric spaces that enjoy various forms of homogeneity with respect to Mobius self-homeomorphisms. We investigate connections between such homogeneity and the combination of isometric homogeneity with invertibility. In particular, we provide a new characterization of snowflakes of boundaries of rank-one symmetric spaces of non-compact type among locally compact and connected metric spaces. Furthermore, we investigate the metric implications of homogeneity with respect to uniformly strongly quasi-Mobius self-homeomorphisms, connecting such homogeneity with the combination of uniform bi-Lipschitz homogeneity and quasi-invertibility. In this context we characterize spaces containing a cut point and provide several metric properties of spaces containing no cut points. These results are motivated by a desire to characterize the snowflakes of boundaries of rank-one symmetric spaces up to bi-Lipschitz equivalence.
The Mobius metric $delta_G$ is studied in the cases where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these res
We prove the differentiability of Lipschitz maps X-->V, where X is a complete metric measure space satisfying a doubling condition and a Poincare inequality, and V is a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new ch
We prove that on an essentially non-branching $mathrm{MCP}(K,N)$ space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
A new similarity invariant metric $v_G$ is introduced. The visual angle metric $v_G$ is defined on a domain $GsubsetneqRn$ whose boundary is not a proper subset of a line. We find sharp bounds for $v_G$ in terms of the hyperbolic metric in the partic
Let $mathfrak{M}$ be a class of metric spaces. A metric space $Y$ is minimal $mathfrak{M}$-universal if every $Xinmathfrak{M}$ can be isometrically embedded in $Y$ but there are no proper subsets of $Y$ satisfying this property. We find conditions un