ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward a quasi-Mobius characterization of Invertible Homogeneous Metric Spaces

60   0   0.0 ( 0 )
 نشر من قبل Enrico Le Donne
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study locally compact metric spaces that enjoy various forms of homogeneity with respect to Mobius self-homeomorphisms. We investigate connections between such homogeneity and the combination of isometric homogeneity with invertibility. In particular, we provide a new characterization of snowflakes of boundaries of rank-one symmetric spaces of non-compact type among locally compact and connected metric spaces. Furthermore, we investigate the metric implications of homogeneity with respect to uniformly strongly quasi-Mobius self-homeomorphisms, connecting such homogeneity with the combination of uniform bi-Lipschitz homogeneity and quasi-invertibility. In this context we characterize spaces containing a cut point and provide several metric properties of spaces containing no cut points. These results are motivated by a desire to characterize the snowflakes of boundaries of rank-one symmetric spaces up to bi-Lipschitz equivalence.



قيم البحث

اقرأ أيضاً

The Mobius metric $delta_G$ is studied in the cases where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these res ults to find bounds for the distortion of the Mobius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Mobius metric and its connection to the hyperbolic metric in polygon domains.
We prove the differentiability of Lipschitz maps X-->V, where X is a complete metric measure space satisfying a doubling condition and a Poincare inequality, and V is a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new ch aracterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direction of tangent vectors to suitable rectifiable curves.
129 - Xian-Tao Huang 2021
We prove that on an essentially non-branching $mathrm{MCP}(K,N)$ space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
A new similarity invariant metric $v_G$ is introduced. The visual angle metric $v_G$ is defined on a domain $GsubsetneqRn$ whose boundary is not a proper subset of a line. We find sharp bounds for $v_G$ in terms of the hyperbolic metric in the partic ular case when the domain is either the unit ball $Bn$ or the upper half space $Hn$. We also obtain the sharp Lipschitz constant for a Mobius transformation $f: Grightarrow G$ between domains $G$ and $G$ in $Rn$ with respect to the metrics $v_G$ and $v_{G}$. For instance, in the case $G=G=Bn$ the result is sharp.
Let $mathfrak{M}$ be a class of metric spaces. A metric space $Y$ is minimal $mathfrak{M}$-universal if every $Xinmathfrak{M}$ can be isometrically embedded in $Y$ but there are no proper subsets of $Y$ satisfying this property. We find conditions un der which, for given metric space $X$, there is a class $mathfrak{M}$ of metric spaces such that $X$ is minimal $mathfrak{M}$-universal. We generalize the notion of minimal $mathfrak{M}$-universal metric space to notion of minimal $mathfrak{M}$-universal class of metric spaces and prove the uniqueness, up to an isomorphism, for these classes. The necessary and sufficient conditions under which the disjoint union of the metric spaces belonging to a class $mathfrak{M}$ is minimal $mathfrak{M}$-universal are found. Examples of minimal universal metric spaces are constructed for the classes of the three-point metric spaces and $n$-dimensional normed spaces. Moreover minimal universal metric spaces are found for some subclasses of the class of metric spaces $X$ which possesses the following property. Among every three distinct points of $X$ there is one point lying between the other two points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا