ترغب بنشر مسار تعليمي؟ اضغط هنا

From Electric Circuits to Chemical Networks

508   0   0.0 ( 0 )
 نشر من قبل Max Tschaikowski
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Electric circuits manipulate electric charge and magnetic flux via a small set of discrete components to implement useful functionality over continuous time-varying signals represented by currents and voltages. Much of the same functionality is useful to biological organisms, where it is implemented by a completely different set of discrete components (typically proteins) and signal representations (typically via concentrations). We describe how to take a linear electric circuit and systematically convert it to a chemical reaction network of the same functionality, as a dynamical system. Both the structure and the components of the electric circuit are dissolved in the process, but the resulting chemical network is intelligible. This approach provides access to a large library of well-studied devices, from analog electronics, whose chemical network realization can be compared to natural biochemical networks, or used to engineer synthetic biochemical networks.

قيم البحث

اقرأ أيضاً

The development of hydraulic fracturing technology has dramatically increased the supply and lowered the cost of natural gas in the United States, driving an expansion of natural gas-fired generation capacity in several electrical inter-connections. Gas-fired generators have the capability to ramp quickly and are often utilized by grid operators to balance intermittency caused by wind generation. The time-varying output of these generators results in time-varying natural gas consumption rates that impact the pressure and line-pack of the gas network. As gas system operators assume nearly constant gas consumption when estimating pipeline transfer capacity and for planning operations, such fluctuations are a source of risk to their system. Here, we develop a new method to assess this risk. We consider a model of gas networks with consumption modeled through two components: forecasted consumption and small spatio-temporarily varying consumption due to the gas-fired generators being used to balance wind. While the forecasted consumption is globally balanced over longer time scales, the fluctuating consumption causes pressure fluctuations in the gas system to grow diffusively in time with a diffusion rate sensitive to the steady but spatially-inhomogeneous forecasted distribution of mass flow. To motivate our approach, we analyze the effect of fluctuating gas consumption on a model of the Transco gas pipeline that extends from the Gulf of Mexico to the Northeast of the United States.
Although topological Anderson insulator has been predicted in 2009, the lasting investigations of this disorder established nontrivial state results in only two experimental observations in cold atoms [Science, {bf 362 },929 (2018)] and in photonic c rystals [Nature, {bf 560}, 461 (2018)] recently. In this paper, we study the topological Anderson transition in electric circuits. By arranging capacitor and inductor network, we construct a disordered Haldane model. Specially, the disorder is introduced by the grounding inductors with random inductance. Based on non-commutative geometry method and transport calculation, we confirm that the disorder in circuits can drive a transition from normal insulator to topological Anderson insulator. We also find the random inductance induced disorder possessing unique characters rather than Anderson disorder, therefore it leads to distinguishable features of topological Anderson transition in circuits. Different from other systems, the topological Anderson insulator in circuits can be detected by measuring the corresponding quantized transmission coefficient and edge state wavefunction due to mature microelectronic technology.
In this paper, we propose a technique for the estimation of the influence matrix in a sparse social network, in which $n$ individual communicate in a gossip way. At each step, a random subset of the social actors is active and interacts with randomly chosen neighbors. The opinions evolve according to a Friedkin and Johnsen mechanism, in which the individuals updates their belief to a convex combination of their current belief, the belief of the agents they interact with, and their initial belief, or prejudice. Leveraging recent results of estimation of vector autoregressive processes, we reconstruct the social network topology and the strength of the interconnections starting from textit{partial observations} of the interactions, thus removing one of the main drawbacks of finite horizon techniques. The effectiveness of the proposed method is shown on randomly generation networks.
We develop methods to efficiently reconstruct the topology and line parameters of a power grid from the measurement of nodal variables. We propose two compressed sensing algorithms that minimize the amount of necessary measurement resources by exploi ting network sparsity, symmetry of connections and potential prior knowledge about the connectivity. The algorithms are reciprocal to established state estimation methods, where nodal variables are estimated from few measurements given the network structure. Hence, they enable an advanced grid monitoring where both state and structure of a grid are subject to uncertainties or missing information.
52 - Eduardo D. Sontag 2016
This note analyzes incoherent feedforward loops in signal processing and control. It studies the response properties of IFFLs to exponentially growing inputs, both for a standard version of the IFFL and for a variation in which the output variable ha s a positive self-feedback term. It also considers a negative feedback configuration, using such a device as a controller. It uncovers a somewhat surprising phenomenon in which stabilization is only possible in disconnected regions of parameter space, as the controlled systems growth rate is varied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا