ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferroelectric polarization rotation in order-disorder-type LiNbO3 thin films

127   0   0.0 ( 0 )
 نشر من قبل Sang A Lee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The direction of ferroelectric polarization is prescribed by the symmetry of the crystal structure. Therefore, rotation of the polarization direction is largely limited, despite the opportunity it offers in understanding important dielectric phenomena such as piezoelectric response near the morphotropic phase boundaries and practical applications such as ferroelectric memory. In this study, we report the observation of continuous rotation of ferroelectric polarization in order-disorder type LiNbO3 thin films. The spontaneous polarization could be tilted from an out-of-plane to an in-plane direction in the thin film by controlling the Li vacancy concentration within the hexagonal lattice framework. Partial inclusion of monoclinic-like phase is attributed to the breaking of macroscopic inversion symmetry along different directions and the emergence of ferroelectric polarization along the in-plane direction.

قيم البحث

اقرأ أيضاً

It was discovered in 2010 that Croconic Acid, in its crystal form, has the highest polarization among organic ferroelectrics. In the context of eliminating toxic substances from electronic devices, Croconic Acid has a great potential as a sublimable lead-free ferroelectric. However, studies on ferroelectric properties of its thin films are only in their early stages and its capability to be incorporated in nanoscale devices is unknown. In this work, we demonstrate, upon ferroelectric switching at the nanoscale, stable and enduring room temperature polarization with no leakage current in Croconic Acid thin films. We thus show that it is a promising lead-free organic ferroelectric toward integration in nanoscale devices. The challenging switching current and polarization reversal characterization at the nanoscale was done using a unique combination of piezoresponse force microscopy, polarization switching current spectroscopy and the concurrent electromechanical strain response. Indeed, this combination can help to rationalize otherwise asymmetric polarization-voltage data and distorted hysteresis due to current jumps below the background noise, which are statistically washed away in macrojunctions but become prevalent at the nanoscale. These results are valid irrespective of the ferroelectrics nature, organic or inorganic. Beyond the potential of Croconic Acid as an ecological ferroelectric material in devices, our detection of a clear nanoscopic polarization switching current thus paves the way for a fundamental understanding and technological applications of the polarization reversal mechanism at the nanoscale.
The emergent behaviors in thin films of a multiaxial ferroelectric due to an electrochemical coupling between the rotating polarization and surface ions are explored within the framework of the 2-4 Landau-Ginzburg-Devonshire (LGD) thermodynamic poten tial combined with the Stephenson-Highland (SH) approach. The combined LGD-SH approach allows to describe the electrochemical switching and rotation of polarization vector in the multiaxial ferroelectric film covered by surface ions with a charge density dependent to the relative partial oxygen pressure. We calculate the phase diagrams and analyze the dependence of polarization components on the applied voltage, and discuss the peculiarities of quasi-static ferroelectric, dielectric and piezoelectric hysteresis loops in thin strained multiaxial ferroelectric films. The nonlinear surface screening by oxygen ions makes the diagrams very different from the known diagrams of e.g., strained BaTiO3 films. Quite unexpectedly we predict the appearance of the ferroelectric reentrant phases. Obtained results point on the possibility to control the appearance and features of ferroelectric, dielectric and piezoelectric hysteresis in multiaxial FE films covered by surface ions by varying their concentration via the partial oxygen pressure. The LGD-SH description of a multiaxial FE film can be further implemented within the Bayesian optimization framework, opening the pathway towards predictive materials optimization.
Hybrid-halide perovskite (HHP) films exhibit exceptional photo-electric properties. These materials are utilized for highly efficient solar cells and photoconductive technologies. Both ion migration and polarization have been proposed as the source o f enhanced photoelectric activity, but the exact origin of these advantageous device properties has remained elusive. Here, we combined microscale and device-scale characterization to demonstrate that polarization-assisted conductivity governs photoconductivity in thin HHP films. Conductive atomic force microscopy under light and variable temperature conditions showed that the photocurrent is directional and is suppressed at the tetragonal-to-cubic transformation. It was revealed that polarization-based conductivity is enhanced by light, whereas dark conductivity is dominated by non-directional ion migration, as was confirmed by large-scale device measurements. Following the non-volatile memory nature of polarization domains, photoconductive memristive behavior was demonstrated. Understanding the origin of photoelectric activity in HHP allows designing devices with enhanced functionality and lays the grounds for photoelectric memristive devices.
98 - Y. Fang , D. H. Xie , W. Zhang 2015
Various Fe-vacancy orders have been reported in tetragonal Fe1-xSe single crystals and nanowires/nanosheets, which are similar to those found in alkali metal intercalated A1-xFe2-ySe2 superconductors. Here we report the in-situ angle-resolved photoem ission spectroscopy study of Fe-vacancy disordered and ordered phases in FeSe multi-layer thin films grown by molecular beam epitaxy. Low temperature annealed FeSe films are identified to be Fe-vacancy disordered phase and electron doped. Further long-time low temperature anneal can change the Fe-vacancy disordered phase to ordered phase, which is found to be semiconductor/insulator with (root 5) x (root 5) superstructure and can be reversely changed to disordered phase with high temperature anneal. Our results reveal that the disorder-order transition in FeSe thin films can be simply tuned by vacuum anneal and the (root 5) x (root 5) Fe-vacancy ordered phase is more likely the parent phase of FeSe.
A reduction of polarization in ultra-thin ferroelectric films appears to be fundamental to ferroelectricity at the nanoscale. For the model system PbTiO3 on SrTiO3, we report observation of the polarization vs. thickness relation. Distinct periodicit y changes of ferroelectric domains obtained from x-ray diffraction and total energy calculations reveal a linear lowering of the polarization below a critical thickness of ~12 nm. Independent polarization and tetragonality measurements provide insight into the fundamental relation between polarization and tetragonality in nanoscale ferroelectrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا