ﻻ يوجد ملخص باللغة العربية
In this paper, we study the existence of nodal solutions for the non-autonomous Schr{o}dinger--Poisson system: begin{equation*} left{ begin{array}{ll} -Delta u+u+lambda K(x) phi u=f(x) |u|^{p-2}u & text{ in }mathbb{R}^{3}, -Delta phi =K(x)u^{2} & text{ in }mathbb{R}^{3},% end{array}% right. end{equation*}% where $lambda >0$ is a parameter and $2<p<4$. Under some proper assumptions on the nonnegative functions $K(x)$ and $f(x)$, but not requiring any symmetry property, when $lambda$ is sufficiently small, we find a bounded nodal solution for the above problem by proposing a new approach, which changes sign exactly once in $mathbb{R}^{3}$. In particular, the existence of a least energy nodal solution is concerned as well.
We investigate the structure of nodal solutions for coupled nonlinear Schr{o}dinger equations in the repulsive coupling regime. Among other results, for the following coupled system of $N$ equations, we prove the existence of infinitely many nodal so
In this paper, we study a class of Schr{o}dinger-Poisson (SP) systems with general nonlinearity where the nonlinearity does not require Ambrosetti-Rabinowitz and Nehari monotonic conditions. We establish new estimates and explore the associated energ
In this paper, we give a complete study on the existence and non-existence of normalized solutions for Schr{o}dinger system with quadratic and cubic interactions. In the one dimension case, the energy functional is bounded from below on the product o
We prove that the derivative nonlinear Schr{o}dinger equation is globally well-posed in $H^{frac 12} (mathbb{R})$ when the mass of initial data is strictly less than $4pi$.
In the first part of the paper we continue the study of solutions to Schrodinger equations with a time singularity in the dispersive relation and in the periodic setting. In the second we show that if the Schrodinger operator involves a Laplace opera