ﻻ يوجد ملخص باللغة العربية
The impact of spin induced deformation and shape phase transitions on nuclear level density and consequently on neutron emission spectra of the decay of compound nuclear systems 112^Ru to 123^Cs (N = 68 isotones) is investigated in a microscopic framework of Statistical theory of superfluid nuclei. Our calculations are in good accord with experimental data for evaporation residue of 119^Sb^* and 185^Re^* and show a strong correlation between spin induced structural transitions and NLD. We find that the inverse level density parameter K increases with increasing spin for all the systems, but it decreases with a deformation or a shape change that results in the enhancement of level density and emission probability. A sharp shape phase transition from oblate to uncommon prolate non-collective in well deformed nuclei leads to band crossing and enhancement of level density which fades away while approaching sphericity at or near shell closure manifesting shell effects.
The response function approach is proposed to include vibrational state in calculation of level density. The calculations show rather strong dependence of level density on the relaxation times of collective state damping.
Nuclear reactions of interest for astrophysics and applications often rely on statistical model calculations for nuclear reaction rates, particularly for nuclei far from $beta$-stability. However, statistical model parameters are often poorly constra
Starting from a Skyrme interaction with tensor terms, the $beta$-decay rates of $^{52}$Ca have been studied within a microscopic model including the $2p-2h$ configuration effects. We observe a redistribution of the strength of Gamow-Teller transition
According to the driving potential of a fissile system, we propose a phenomenological fission potential for a description of the pre-neutron emission mass distributions of neutron-induced actinide fission. Based on the nucleus-nucleus potential with
Incident neutron energy dependence of delayed neutron yields of uranium and plutonium isotopes is investigated. A summation calculation of decay and fission yield data is employed, and the energy dependence of the latter part is considered in a pheno