ﻻ يوجد ملخص باللغة العربية
We report a phenomenon of self-sweeping in a bi-directional ring thulium-doped fiber laser, for the first time. The laser is spontaneously sweeping in both directions at a rate up to 0.2 nm/s with 15 nm sweeping range in 1.95 {mu}m wavelength region. The laser output is switchable between two different working modes: periodical spontaneous laser line sweeping with generation of microsecond pulses in time domain; or static central wavelength with amplitude modulated temporally.
We have experimentally investigated the soliton interaction in a passively mode-locked fiber ring laser and revealed the existence of three types of strong soliton interaction: a global type of soliton interaction caused by the existence of unstable
Generally speaking, the self-sweeping effect relies on the dynamical grating formed in a gain fiber. Here, the normal self-sweeping was generated in a pump-free ytterbium-doped fiber which serves as a fiber saturable absorber and is introduced to the
We demonstrate a gain-switched thulium fiber laser that can be continuously tuned over 140 nm, while maintaining stable nanosecond single-pulse operation. To the best of our knowledge, this system represents the broadest tuning range for a gain-switc
We report on a monolithic thulium fiber laser with 567 W output power at 1970 nm, which is the highest power reported so far directly from a thulium oscillator. This is achieved by optimization of the splice parameters for the active fiber (minimizin
The frequency stability of lasers is limited by thermal noise in state-of-the-art frequency references. Further improvement requires operation at cryogenic temperature. In this context, we investigate a fiber-based ring resonator. Our system exhibits